摘要:
Equivalent oxide thickness (EOT) scaled high k/metal gate stacks are provided in which the capacitance bottleneck of the interfacial layer is substantially eliminated, with minimal compromise on the mobility of carriers in the channel of the device. In one embodiment, the aforementioned EOT scaled high k/metal gate stacks are achieved by increasing the dielectric constant of the interfacial layer to a value that is greater than the originally formed interfacial layer, i.e., the interfacial layer prior to diffusion of a high k material dopant element therein. In another embodiment, the aforementioned scaled high k/metal gate stacks are achieved by eliminating the interfacial layer from the structure. In yet another embodiment, the aforementioned high k/metal gate stacks are achieved by both increasing the dielectric constant of the interfacial layer and reducing/eliminating the interfacial layer.
摘要:
Equivalent oxide thickness (EOT) scaled high k/metal gate stacks are provided in which the capacitance bottleneck of the interfacial layer is substantially eliminated, with minimal compromise on the mobility of carriers in the channel of the device. In one embodiment, the aforementioned EOT scaled high k/metal gate stacks are achieved by increasing the dielectric constant of the interfacial layer to a value that is greater than the originally formed interfacial layer, i.e., the interfacial layer prior to diffusion of a high k material dopant element therein. In another embodiment, the aforementioned scaled high k/metal gate stacks are achieved by eliminating the interfacial layer from the structure. In yet another embodiment, the aforementioned high k/metal gate stacks are achieved by both increasing the dielectric constant of the interfacial layer and reducing/eliminating the interfacial layer.
摘要:
Equivalent oxide thickness (EOT) scaled high k/metal gate stacks are provided in which the capacitance bottleneck of the interfacial layer is substantially eliminated, with minimal compromise on the mobility of carriers in the channel of the device. In one embodiment, the aforementioned EOT scaled high k/metal gate stacks are achieved by increasing the dielectric constant of the interfacial layer to a value that is greater than the originally formed interfacial layer, i.e., the interfacial layer prior to diffusion of a high k material dopant element therein. In another embodiment, the aforementioned scaled high k/metal gate stacks are achieved by eliminating the interfacial layer from the structure. In yet another embodiment, the aforementioned high k/metal gate stacks are achieved by both increasing the dielectric constant of the interfacial layer and reducing/eliminating the interfacial layer.
摘要:
Equivalent oxide thickness (EOT) scaled high k/metal gate stacks are provided in which the capacitance bottleneck of the interfacial layer is substantially eliminated, with minimal compromise on the mobility of carriers in the channel of the device. In one embodiment, the aforementioned EOT scaled high k/metal gate stacks are achieved by increasing the dielectric constant of the interfacial layer to a value that is greater than the originally formed interfacial layer, i.e., the interfacial layer prior to diffusion of a high k material dopant element therein. In another embodiment, the aforementioned scaled high k/metal gate stacks are achieved by eliminating the interfacial layer from the structure. In yet another embodiment, the aforementioned high k/metal gate stacks are achieved by both increasing the dielectric constant of the interfacial layer and reducing/eliminating the interfacial layer.
摘要:
A semiconductor structure is provided that includes a Vt stabilization layer between a gate dielectric and a gate electrode. The Vt stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the proviso that when the Vt stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
摘要:
The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅叠层结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 本发明中使用的高温退火提供了具有大约8×10 10电荷/ cm 2或更小的电荷泵浦的界面状态密度,约250cm 2 / s以上的峰值迁移率和基本上没有 约6.0×10 12反相电荷/ cm 2以上的迁移率降解。
摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要:
The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高迁移率和低界面电荷的栅叠层结构,以及包括其的半导体器件即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 本发明中使用的高温退火提供了一种栅极叠层结构,其具有约8×10 10电荷/ cm 2或更小的峰值迁移率,约250cm 2 / s或更大的峰迁移率的通过电荷泵浦测量的界面状态密度,以及 在大约6.0×10 12反转电荷/ cm 2或更大时基本上没有迁移率降解。
摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.