Abstract:
Technology for a user equipment (UE) operable to perform adaptive time division duplexing (TDD) hybrid automatic repeat request (HARQ)-ACKnowledgement (ACK) reporting is described. The UE can implement an adaptive uplink-downlink (UL-DL) configuration received from an eNodeB. The UE can decode a downlink (DL) HARQ reference configuration received from the base station for a serving cell, wherein the DL HARQ reference configuration is for the implemented adaptive UL-DL configuration. The UE can decode a reference UL-DL configuration received from the base station via a system information block (SIB). The UE can encode HARQ-ACK feedback for transmission on an uplink channel of the serving cell in accordance with the DL HARQ reference configuration. The UE can perform uplink scheduling and the HARQ-ACK feedback based on the reference UL-DL configuration received from the base station via the SIB.
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FlexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FlexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Methods and apparatus for communicating in a wireless network including apparatus comprising transceiver circuitry to send and receive data in a plurality of time periods, defined by a time division duplex (TDD) time grid, to another entity, the plurality of time periods corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols and the transceiver circuitry being operable to switch from receive mode to transmit mode and/or from transmit mode to receive mode according to a flexible uplink and downlink allocation of the plurality of time periods; and baseband circuitry coupled to the transceiver circuitry to control the transceiver circuitry to switch during a switching interval embedded within a time period corresponding to an OFDM symbol of the plurality of OFDM symbols.
Abstract:
Various embodiments may be generally directed to techniques for transmitting and receiving one or more reference signals opportunistically within a window over an unlicensed carrier. Various embodiments provide techniques for determining a configuration of the window within an operating environment that may include one or more different radio access technologies (RATs). Various embodiments provide techniques for transmitting the one or more reference signals opportunistically within the window based on an availability of a wireless communications medium. Various embodiments provide techniques for receiving and recovering the one or more reference signals regardless of their location within the window, thereby improving communications in an unlicensed spectrum shared by a variety of different communication devices that may operate according to a variety of different communication protocols.
Abstract:
Technology for decreasing latency for contention based scheduling request (SR) transmission is disclosed. A user equipment (UE) can process, for transmission to an enhanced node B (eNB), a DeModulation Reference Signal (DM-RS) that is randomly selected from a set of configured DM-RS sequences or configured by the eNB. The UE can select an SR transmission resource as a function of a DM-RS sequence index or cell identification (ID) based on a predefined mapping rule. The UE can process, for transmission to the eNB, a SR message having a buffer status report (BSR) and UE identification (UE-ID) information on the selected SR transmission resource.
Abstract:
Technology for a user equipment (UE) operable to perform adaptive time division duplexing (TDD) hybrid automatic repeat request (HARQ)-ACKnowledgement (ACK) reporting is described. The UE can implement an adaptive uplink-downlink (UL-DL) configuration received from an eNodeB. The UE can process a downlink (DL) HARQ reference configuration received from the eNodeB for a serving cell. The DL HARQ reference configuration can be for the implemented adaptive UL-DL configuration. The UE can format HARQ-ACK feedback for transmission on a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) of the serving cell in accordance with the DL HARQ reference configuration.
Abstract:
Briefly, in accordance with one or more embodiments, cooperation of multiple beams for transmission is provided by identifying at least two beams among multiple beams that are dominant for a user, determining if there is any beam collision between the at least two beams, and, if there is beam collision between the at least two beams, delaying scheduling on one or more weaker ones of the at least two beams for other users and combining the two or more beams for transmission to the user. Alternatively, cooperation of multiple beams for transmission is provided by, if there is beam collision between the at least two beams, muting one or more weaker ones of the at least two beams and transmitting to the user with a stronger one of the at least two beams.
Abstract:
Opportunistic networking systems can utilize one or multiple bands/channels that are shared with other radio access technologies (RATs) (such as wireless local area networks (WLAN, such as Wi-Fi) and mmWave). An unconventional carrier type (UCT) can be defined to support opportunistic networking in licensed and/or unlicensed spectrum. For example, a primary base station can determine a secondary base station activated for use with user equipment (UE). The primary base station can schedule data to be sent to the UE via the secondary base station. The secondary base station can provide discovery information, reserve a wireless channel, transmit the data and/or release the channel (implicitly, explicitly, or by reservation).
Abstract:
Various embodiments may be generally directed to techniques for transmitting and receiving one or more reference signals opportunistically within a window over an unlicensed carrier. Various embodiments provide techniques for determining a configuration of the window within an operating environment that may include one or more different radio access technologies (RATs). Various embodiments provide techniques for transmitting the one or more reference signals opportunistically within the window based on an availability of a wireless communications medium. Various embodiments provide techniques for receiving and recovering the one or more reference signals regardless of their location within the window, thereby improving communications in an unlicensed spectrum shared by a variety of different communication devices that may operate according to a variety of different communication protocols.
Abstract:
Technology for an eNodeB to communicate with a user equipment (UE) using a extended downlink (DL) self-contained frame within a wireless communication network is disclosed. The eNodeB can process data to form an extended downlink (DL) self-contained frame, comprising: a first self-contained subframe including a DL control data, DL data, uplink (UL) control data, and one or more reference symbols; an Mth subframe is located subsequent to the first self-contained subframe, the Mth subframe including one or more resource elements configured for DL data, wherein M is a positive integer greater that is greater than one; and an Nth subframe that is subsequent to the Mth subframe, the Nth subframe including one or more resource elements configured for UL control data. The eNodeB can process the extended DL self-contained frame for transmission to the UE.