Abstract:
A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
Abstract:
A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
Abstract:
Embodiments include methods of forming an nFET-tuned gate dielectric and a pFET-tuned gate dielectric. Methods may include forming a high-k layer above a substrate having a pFET region and an nFET region, forming a first sacrificial layer, a pFET work-function metal layer, and a second sacrificial layer above the first high-k layer in the pFET region, and an nFET work-function metal layer above the first high-k layer in the nFET region and above the second sacrificial layer in the pFET region. The first high-k layer then may be annealed to form an nFET gate dielectric layer in the nFET region and a pFET gate dielectric layer in the pFET region. The first high-k layer may be annealed in the presence of a nitrogen source to cause atoms from the nitrogen source to diffuse into the first high-k layer in the nFET region.
Abstract:
A system and method generate atomic hydrogen (H) for deposition of a pure metal in a three-dimensional (3D) structure. The method includes forming a monolayer of a compound that includes the pure metal. The method also includes depositing the monolayer on the 3D structure and immersing the 3D structure with the monolayer in an electrochemical cell chamber including an electrolyte. Applying a negative bias voltage to the 3D structure with the monolayer and a positive bias voltage to a counter electrode generates atomic hydrogen from the electrolyte and deposits the pure metal from the monolayer in the 3D structure.