Abstract:
A semiconductor structure is provided that includes a first FET device stacked over a second FET device, wherein the first FET device contains a first functional gate structure containing a first work function metal and the second FET device contains a second functional gate structure containing a second work function metal. In the structure, the first work function metal is absent from an area including the second work function metal, and vice versa. Thus, no shared work functional metal is present in the semiconductor structure.
Abstract:
A semiconductor device includes a plurality of first nanosheet fin structures located in a dense array region of a substrate. The semiconductor device further includes a plurality of first isolation trenches between adjacent first nanosheet fin structures of the plurality of first nanosheet fin structures. The plurality of first isolation trenches include: a first trench isolation layer, a protective liner formed on top of the first trench isolation layer, and a second trench isolation layer located above the protective liner. The protective liner separates the first trench isolation layer from the second trench isolation layer and the first trench isolation layer is more dense than the second trench isolation layer.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
A method for producing a semiconductor structure, as well as a semiconductor structure, that uses a partial removal of an insulating layer around a semiconductor fin, and subsequently epitaxially growing an additional semiconductor material in the exposed regions, while maintaining the shape of the fin with the insulating layer.
Abstract:
A semiconductor device including at least one suspended channel structure of a silicon including material, and a gate structure present on the suspended channel structure. At least one gate dielectric layer is present surrounding the suspended channel structure, and at least one gate conductor is present on the at least one gate dielectric layer. Source and drain structures may be composed of a silicon and germanium including material. The source and drain structures are in contact with the source and drain region ends of the suspended channel structure through a silicon cladding layer.
Abstract:
Formation of deep trench capacitors and isolation structures are decoupled by completing the isolation structures prior to etching trenches for capacitors and forming capacitors therein or vice-versa. Such decoupling of the formation of these respective structures allows different materials to be used in the deep trench capacitors and the isolation structures such as use of low permeability or dielectric constant materials and/or low Young's modulus materials in isolation structures to provide reduced AC capacitive coupling across isolation structures and/or relief of stresses associated with use of high dielectric constant materials or metal-insulator-metal (MIM) structures in deep trench capacitors. Such decoupling also allows increased efficiency of use of reaction chambers for the deep trench capacitors and the isolation structures.
Abstract:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
Abstract:
A high dielectric constant (high-k) gate dielectric for a field effect transistor (FET) and a high-k tunnel dielectric for a non-volatile random access memory (NVRAM) device are simultaneously formed on a semiconductor substrate. A stack of at least one conductive material layer, a control gate dielectric layer, and a disposable material layer is subsequently deposited and lithographically patterned. A planarization dielectric layer is deposited and patterned, and disposable material portions are removed. A remaining portion of the control gate dielectric layer is preserved in the NVRAM device region, but is removed in the FET region. A conductive material is deposited in gate cavities to provide a control gate for the NVRAM device and a gate portion for the FET. Alternately, the control gate dielectric layer may replaced with a high-k control gate dielectric in the NVRAM device region.
Abstract:
Integrated chips and methods of forming the same include forming a stack of layers, including a device stack above a first sacrificial layer, above a substrate. The first sacrificial layer is replaced with a first etch stop layer. The substrate is removed, exposing a substrate-side of the stack of layers. The substrate-side of the stack of layers is etched to form a trench, stopping on the first etch stop layer. A conductive line is formed in the trench.