Abstract:
Wiring structures, methods for providing a wiring structure, and methods for distributing currents with a wiring structure from one or more through-substrate vias to multiple bumps. A first current is directed from a first through-substrate via of a first electrical resistance through a first connection line to a first bump and directing a second current from the first through-substrate via through a second connection line of a second electrical resistance to a second bump. The first connection line has a first length relative to a first position of the first bump and a first cross-sectional area, the second connection line has a second length relative to a first position of the second bump and a second cross-sectional area, the second length is different from the first length, and the second cross-sectional area is different from the first cross-sectional area.
Abstract:
Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
Abstract:
Multiple integrated circuit (IC) devices are connected to a top side metallization surface of a multi IC device carrier. The carrier includes resin based substrate layers and associated wiring line layers. To reduce stain of the resin layers, especially in region(s) within the carrier between the IC devices, a stiffener or stiffeners are applied to the back side metallization (BSM) surface of the IC device carrier. The stiffener(s) reduce the amount of curvature of the IC device carrier and reduce the strain seen by the resin layer(s), thereby mitigating the risk for cracks forming and expanding within the resin layers.
Abstract:
Multiple integrated circuit (IC) devices are connected to a top side metallization surface of a multi IC device carrier. The carrier includes resin based substrate layers and associated wiring line layers. To reduce stain of the resin layers, especially in region(s) within the carrier between the IC devices, a stiffener or stiffeners are applied to the back side metallization (BSM) surface of the IC device carrier. The stiffener(s) reduce the amount of curvature of the IC device carrier and reduce the strain seen by the resin layer(s), thereby mitigating the risk for cracks forming and expanding within the resin layers.
Abstract:
A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
Abstract:
A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
Abstract:
A standoff structure for providing improved interconnects is provided, wherein the structure employs nickel copper alloy or copper structures having increased resistivity.
Abstract:
The present invention relates generally to and more particularly, to a method of fabricating a pillar interconnect structure with non-wettable sidewalls and the resulting structure. More specifically, the present invention may include exposing only the sidewalls of a pillar to an organic material that reacts with metal of the pillar to form an organo-metallic layer on sidewalls of the pillar. The organo-metallic layer may prevent solder from wetting on the sidewalls of the pillar during subsequent bonding/reflow processes.
Abstract:
A method and structure for joining a semiconductor device and a laminate substrate or two laminate substrates where the joint is formed with lead free solders and lead free compositions. The various lead free solders and lead free compositions are chosen so that there is a sufficient difference in liquidus temperatures such that some components may be joined to, or removed from, the laminate substrate without disturbing other components on the laminate substrate.
Abstract:
A method and structure for joining a semiconductor device and a laminate substrate or two laminate substrates where the joint is formed with lead free solders and lead free compositions. The various lead free solders and lead free compositions are chosen so that there is a sufficient difference in liquidus temperatures such that some components may be joined to, or removed from, the laminate substrate without disturbing other components on the laminate substrate.