Abstract:
A cable connector that includes a substrate having a plurality of conductive pads and at least one grounding pad. The cable connector further includes twin axial cable that includes a first conductor and second conductor, a first insulator that surrounds the first conductor, and a second insulator that surrounds the second conductor. The twin axial cable further includes a ground shield that surrounds the first and second insulator. The first conductor is electrically connected to one conductive pad and the second conductor is electrically connected to another of the conductive pads. The ground shield is electrically connected to the grounding pad. A shielding structure is mounted to the substrate and is electrically connected to the grounding pad. The shielding structure includes a cap and a plurality of sidewalls extending from the cap to the substrate. The twin axial cable is positioned between the side walls.
Abstract:
A cable connector that includes a substrate having a plurality of conductive pads and at least one grounding pad. The cable connector further includes twin axial cable that includes a first conductor and second conductor, a first insulator that surrounds the first conductor, and a second insulator that surrounds the second conductor. The twin axial cable further includes a ground shield that surrounds the first and second insulator. The first conductor is electrically connected to one conductive pad and the second conductor is electrically connected to another of the conductive pads. The ground shield is electrically connected to the grounding pad. A shielding structure is mounted to the substrate and is electrically connected to the grounding pad. The shielding structure includes a cap and a plurality of sidewalls extending from the cap to the substrate. The twin axial cable is positioned between the side walls.
Abstract:
Embodiments of the present disclosure are directed towards a snap connector for socket assembly and associated techniques and configurations. In one embodiment, a socket assembly includes a socket body having a plurality of openings extending from a first side of the socket body to a second side of the socket body to provide an electrical pathway between the first side and the second side, the second side disposed opposite to the first side, wherein a holding portion of an individual opening of the plurality of openings adjacent to the first side of the socket body is shaped to hold a corresponding electrical contact of a die package by elastic force applied by the socket body to the electrical contact when the electrical contact is positioned within the holding portion. Other embodiments may be described and/or claimed.
Abstract:
An apparatus comprises a socket for an integrated circuited (IC), wherein the socket includes a socket body that includes a plurality of land grid array contacts for contacting the IC, an alignment mechanism, and a locking mechanism, and a cover for the socket, wherein the cover is vertically alignable with the alignment mechanism of the socket body and laterally slidable over the grid array contacts upon alignment to engage the locking mechanism of the socket body.
Abstract:
Embodiments of the present disclosure are directed towards a socket loading element and associated techniques and configurations. In one embodiment, an apparatus may include a loading element configured to transfer a compressive load from a heat spreader to a socket assembly, wherein the loading element is configured to form a perimeter around a die when the loading element is coupled with an interposer disposed between the die and the socket assembly and wherein the loading element includes an opening configured to accommodate the die. Other embodiments may be described and/or claimed.
Abstract:
Microelectronic package communication is described using radio interfaces connected through wiring. One example includes a system board, an integrated circuit chip, and a package substrate mounted to the system board to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components. A radio on the package substrate is coupled to the integrated circuit chip to modulate the data onto a carrier and to transmit the modulated data. A radio on the system board receives the transmitted modulated data and demodulates the received data, and a cable interface is coupled to the system board radio to couple the received demodulated data to a cable.
Abstract:
Embodiments of the present disclosure are directed towards socket contact techniques and configurations. In one embodiment, an apparatus may include a socket substrate having a first side and a second side disposed opposite to the first side, an opening formed through the socket substrate, an electrical contact disposed in the opening and configured to route electrical signals between the first side and the second side of the socket substrate, the electrical contact having a cantilever portion that extends beyond the first side, wherein the first side and surfaces of the socket substrate in the opening are plated with a metal. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations associated with a package load assembly. In one embodiment, a package load assembly may include a frame configured to form a perimeter around a die area of a package substrate having a first surface configured to be coupled with a surface of the package substrate and a second surface disposed opposite to the first surface. The frame may include deformable members disposed on the second surface, which may be configured to be coupled with a base of a heat sink to distribute force applied between the heat sink and the package substrate, via the frame, and may deform under application of the force, which may allow the base of the heat sink to contact a surface of an integrated heat spreader within the die area of the package substrate.
Abstract:
A connector for a multi-array bottom side array is described that uses a spring bias. In one example, a connector includes a connector housing, the connector housing having a bottom surface, and a plurality of resilient connectors opposite the bottom surface to electrically connect to a corresponding plurality of pads of an integrated circuit package, a cable connector to electrically connect the resilient connectors to a cable, a base plate having a bottom surface to press against a circuit board, and a top surface opposite the bottom surface, and plurality of spring members coupled between the base plate and the connector bottom surface to press the base plate bottom surface against the system board and to press the connector housing connectors against the package.
Abstract:
Embodiments of the present disclosure are directed towards a snap connector for socket assembly and associated techniques and configurations. In one embodiment, a socket assembly includes a socket body having a plurality of openings extending from a first side of the socket body to a second side of the socket body to provide an electrical pathway between the first side and the second side, the second side disposed opposite to the first side, wherein a holding portion of an individual opening of the plurality of openings adjacent to the first side of the socket body is shaped to hold a corresponding electrical contact of a die package by elastic force applied by the socket body to the electrical contact when the electrical contact is positioned within the holding portion. Other embodiments may be described and/or claimed.