Abstract:
Methods for producing RRAM resistive switching elements having reduced forming voltage include preventing formation of interfacial layers, and creating electronic defects in a dielectric film. Suppressing interfacial layers in an electrode reduces forming voltage. Electronic defects in a dielectric film foster formation of conductive pathways.
Abstract:
Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
Abstract:
Selector devices suitable for memory arrays have low leakage currents at low voltages, reducing sneak current paths for non-selected devices, and high leakage currents at high voltages, reducing voltage drops during switching. The selector device may include a non-conductive tri-layer between two electrodes. The non-conductive tri-layer may include a low-bandgap dielectric layer between two higher-bandgap dielectric layers. The high-bandgap dielectric layers may be doped to form traps at energy levels higher than the write voltage of the memory device. With a thin low-bandgap layer and a large bandgap difference from the high-bandgap layers, the selector may operate as a quantum well, conductive when the electrode Fermi level matches the lowest energy level of the quantum well and insulating at lower voltages.
Abstract:
This disclosure provides a nonvolatile memory device and related methods of manufacture and operation. The device may include one or more resistive random access memory (ReRAM) approaches to provide a memory device with more predictable operation. In particular, the forming voltage required by particular designs may be reduced through the use of a barrier layer, a reverse polarity forming voltage pulse, a forming voltage pulse where electrons are injected from a lower work function electrode, or an anneal in a reducing environment. One or more of these techniques may be applied, depending on the desired application and results.
Abstract:
This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
Abstract:
Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
Abstract:
Selector devices that can be suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. The selector device can include a first electrode, a tri-layer dielectric layer, and a second electrode. The tri-layer dielectric layer can include a low band gap dielectric layer disposed between two higher band gap dielectric layers. The high band gap dielectric layers can be doped with doping materials to form traps at energy levels higher than the operating voltage of the memory device.
Abstract:
MIMCAP diodes are provided that can be suitable for memory device applications, such as current selector devices for cross point memory array. The MIMCAP diodes can have lower thermal budget as compared to Schottky diodes and controllable lower barrier height and lower series resistance as compared to MIMCAP tunneling diodes. The MIMCAP diode can include a barrier height modification layer, a low leakage dielectric layer and a high leakage dielectric layer. The layers can be sandwiched between two electrodes.
Abstract:
Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
Abstract:
Selector devices that can be suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. The selector device can include a first electrode, a tri-layer dielectric layer, and a second electrode. The tri-layer dielectric layer can include a low band gap dielectric layer disposed between two higher band gap dielectric layers. The high band gap dielectric layers can be doped with doping materials to form traps at energy levels higher than the operating voltage of the memory device.