摘要:
Devices employing semiconductor die having hydrophobic coatings, and related cooling methods are disclosed. A device may include at least one semiconductor die electrically coupled to a substrate by electrical contact elements. During operation the semiconductor die and the electrical contact elements generate heat. By applying hydrophobic coatings to the semiconductor die and the electrical contact elements, a cooling fluid may be used to directly cool the semiconductor die and the electrical contact elements to maintain these components within temperature limits and free from electrical shorting and corrosion. In this manner, the semiconductor die and associated electrical contact elements may be cooled to avoid the creation of damaging localized hot spots and temperature-sensitive semiconductor performance issues.
摘要:
According to an embodiment, a method of producing (e.g., making) a membrane for detecting toxic shock syndrome toxins includes depositing a second antibody on a first zone of the membrane. The second antibody is reactive with an antibody complex to cause a first indication. The antibody complex includes a first antibody coupled to a TSST-1 antigen. The method also includes depositing a third antibody on a second zone of the membrane. The third antibody is reactive with a fourth antibody to cause a second indication.
摘要:
Embodiments herein describe techniques for operating an omnidirectional treadmill, the techniques include receiving VR (virtual reality) topographical information comprising a VR environment, and displaying the VR environment to a user wearing a headset. VR topographical information includes information about VR elements in front of the user in the VR environment relative to a facing direction of the user in the VR environment. The method includes sending topographical signals to active elements in an omnidirectional treadmill based upon the VR topographical information where the omnidirectional treadmill permits the user to move along at least two perpendicular directions of motion on a surface of the omnidirectional treadmill. The techniques include activating the active elements, based upon the VR topographical signals, to physically simulate the VR elements in the VR topographical information on the surface by at least one of expanding or contracting the active elements.
摘要:
Embodiments of the present disclosure generally relate to the thermal management and regulation of electronic equipment. Microfluidic channels are utilized to actively change the aerodynamics of a surface, which may allow for the ability to change a surface texture from flat to raised, or dimpled, or from open to closed. The changing of the surface texture influences the fluid flow over or through the surface, thus allowing for thermal regulation of the surface. The thermal regulation system further controls fluid flow through an electronic device via a coating, or layer, having a plurality of active perforations thereon. The active perforations may open and close to increase and decrease the inlet of air to the system in order to help balance the back pressure in the system and redirect airflow to more sensitive system components. Active perforations may be individually opened and/or closed depending on location and system component utilization.
摘要:
Embodiments of the present disclosure generally relate to the thermal management and regulation of electronic equipment. Microfluidic channels are utilized to actively change the aerodynamics of a surface, which may allow for the ability to change a surface texture from flat to raised, or dimpled, or from open to closed. The changing of the surface texture influences the fluid flow over or through the surface, thus allowing for thermal regulation of the surface. The thermal regulation system further controls fluid flow through an electronic device via a coating, or layer, having a plurality of active perforations thereon. The active perforations may open and close to increase and decrease the inlet of air to the system in order to help balance the back pressure in the system and redirect airflow to more sensitive system components. Active perforations may be individually opened and/or closed depending on location and system component utilization.