摘要:
Provided herein is a carrier-attached copper foil having desirable laser drillability through an ultrathin copper layer, preferred for fabrication of a high-density integrated circuit substrate. The carrier-attached copper foil includes an interlayer and an ultrathin copper layer that are provided in this order on one or both surfaces of a carrier. The surface roughness Sz and the surface roughness Sa on the interlayer side of the ultrathin copper layer satisfy Sz≤3.6 μm, and Sz/Sa≤14.00 as measured with a laser microscope in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated to an insulating substrate from the ultrathin copper layer side under a pressure of 20 kgf/cm2 and heated at 220° C. for 2 hours. GMD, which is a 60-degree glossiness of the ultrathin copper layer surface on the interlayer side in MD direction, satisfies GMD≤150 in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated using the same procedure.
摘要:
Provided is a copper foil for a printed wiring board including a roughened layer on at least one surface thereof. In the roughened layer, the average diameter D1 at the particle bottom being apart from the bottom of each particle by 10% of the particle length is 0.2 to 1.0 μm, and the ratio L1/D1 of the particle length L1 to the average diameter D1 at the particle bottom is 15 or less. In the copper foil for printed wiring board, when a copper foil for printed wiring having a roughened layer is laminated to a resin and then the copper layer is removed by etching, the sum of areas of holes accounting for the resin roughened surface having unevenness is 20% or more. The present invention involves the development of a copper foil for a semiconductor package substrate that can avoid circuit erosion without causing deterioration in other properties of the copper foil. In particular, an object of the present invention is to provide a copper foil for a printed wiring board and a method of producing the copper foil, in which the adhesion strength between the copper foil and the resin can be enhanced by improvement of the roughened layer of the copper foil.
摘要:
Present invention provides an electrolytic copper foil having a high normal tensile strength and a resistance to the lowering of the tensile strength after thermal treatment. An electrolytic copper foil having a normal tensile strength of 500-750 MPa and a tensile strength after heating at 400° C. for one hour of at least 350 MPa.
摘要:
The present invention provides a surface-treated copper foil capable of imparting the profile shape of the substrate surface after removal of the copper foil, the profile shape maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The present invention also provides a resin substrate provided with a profile shape of the surface maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The surface-treated copper foil of the present invention is a surface-treated copper foil, wherein a surface-treated layer is formed on a copper foil, and the proportion of the area corresponding to the particles of the surface of the surface-treated layer is 0.1 to 0.85.
摘要:
Provided is a copper foil provided with a carrier which enables, in a laminate produced by laminating a copper foil provided with a carrier on a resin substrate, to peel the ultrathin copper layer from the carrier well. A copper foil provided with a carrier having, in order, a carrier, an intermediate layer, and an ultrathin copper layer, wherein, when the surface of the carrier opposite to the ultrathin copper layer is measured using a laser microscope based on JIS B0601-1994, the ten point average roughness Rz of the surface is 6.0 μm or less.
摘要:
Provided is a copper foil for a printed wiring board including a roughened layer on at least one surface thereof. In the roughened layer, the average diameter D1 at the particle bottom being apart from the bottom of each particle by 10% of the particle length is 0.2 to 1.0 μm, and the ratio L1/D1 of the particle length L1 to the average diameter D1 at the particle bottom is 15 or less. In the copper foil for printed wiring board, when a copper foil for printed wiring having a roughened layer is laminated to a resin and then the copper layer is removed by etching, the sum of areas of holes accounting for the resin roughened surface having unevenness is 20% or more. The present invention involves the development of a copper foil for a semiconductor package substrate that can avoid circuit erosion without causing deterioration in other properties of the copper foil. In particular, an object of the present invention is to provide a copper foil for a printed wiring board and a method of producing the copper foil, in which the adhesion strength between the copper foil and the resin can be enhanced by improvement of the roughened layer of the copper foil.
摘要:
Provided is a copper foil provided with a carrier which enables to form an extremely fine circuit and to suppress the disconnection of a circuit well. A copper foil provided with a carrier having, in order, an intermediate layer and an ultrathin copper layer on one side or both sides of the carrier, wherein the ultrathin copper layer is an electrolytic copper layer; and the thickness of the ultrathin copper layer measured by using a gravimetric method is 1.5 μm or less and the number of pinholes in the ultrathin copper layer is 0 pinholes/m2 or more and 5 pinholes/m2 or less.
摘要:
Provided is a copper foil provided with a carrier in which the laser hole-opening properties of the ultrathin copper layer are good and which is suitable for producing a high-density integrated circuit substrate. A copper foil provided with a carrier having, in order, a carrier, an intermediate layer, and an ultrathin copper layer, wherein the specular gloss at 60° in an MD direction of the intermediate layer side surface of the ultrathin copper layer is 140 or less.
摘要:
Provided herein is a carrier-attached copper foil having desirable laser drillability through an ultrathin copper layer, preferred for fabrication of a high-density integrated circuit substrate. The carrier-attached copper foil includes an interlayer and an ultrathin copper layer that are provided in this order on one or both surfaces of a carrier. The surface roughness Sz and the surface roughness Sa on the interlayer side of the ultrathin copper layer satisfy Sz≦3.6 μm, and Sz/Sa≦14.00 as measured with a laser microscope in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated to an insulating substrate from the ultrathin copper layer side under a pressure of 20 kgf/cm2 and heated at 220° C. for 2 hours. GMD, which is a 60-degree glossiness of the ultrathin copper layer surface on the interlayer side in MD direction, satisfies GMD≦150 in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated using the same procedure.
摘要翻译:本文提供了一种载体附着的铜箔,其具有通过超薄铜层所需的激光可钻性,优选用于制造高密度集成电路基板。 载体附着的铜箔包括在载体的一个或两个表面上依次设置的中间层和超薄铜层。 在超薄铜层的层间侧的表面粗糙度Sz和表面粗糙度Sa满足Sz≤3.6μm,用激光显微镜测量的Sz /Sa≤14.00,如果从载体附着的铜箔上分离载体,则 在载体附着的铜箔在20kgf / cm 2的压力下从超薄铜层侧层压到绝缘基板上并在220℃下加热2小时的JIS C 6471。 在MD方向的层间侧的超薄铜层表面的60度光泽度的GMD在载体附着后根据JIS C 6471从载体附着的铜箔上分离载体的情况下满足GMD≤150 使用相同的程序层压铜箔。
摘要:
There is provided a negative electrode current collector for a secondary battery comprising an electrodeposited copper foil, having: a normal tensile strength of 500 MPa to 750 MPa and a tensile strength after heating at 400° C. for one hour of at least 50% of the normal tensile strength.