Abstract:
A semiconductor device includes a semiconductor substrate including a cell region and a core region adjacent to the cell region, active regions in the cell region and the core region, an interlayer insulating layer covering the active regions, upper cell contacts penetrating the interlayer insulating layer in the cell region, the upper cell contacts being adjacent to each other along a first direction and being electrically connected to the active regions, and core contacts penetrating the interlayer insulating layer in the active regions of the core region, the core contacts being adjacent to each other along the first direction and including upper connection core contacts electrically connected to the active regions, and dummy contacts adjacent to the upper connection core contacts, the dummy contacts being insulated from the active regions.
Abstract:
A semiconductor device includes a substrate including a first region and a second region, a gate group disposed in the first region of the substrate, the gate group including a plurality of cell gate patterns and at least one selection gate pattern, a first gate pattern disposed in the second region of the substrate, a group spacer covering a top surface and a side surface of the gate group, the group spacer having a first inflection point, and a first pattern spacer covering a top surface and a side surface of the first gate pattern, the first pattern spacer having a second inflection point.
Abstract:
The inventive concepts provide methods for fabricating a semiconductor device and semiconductor devices fabricated by the same. According to the method, conductive lines having a fine pitch smaller than the minimum pitch realized by an exposure process may be formed using two or three photolithography processes and two spacer formation processes. In addition, node separation regions of the conductive lines may be easily formed without a misalignment problem.
Abstract:
A semiconductor device includes a substrate including an active region and a field region, first gate structures disposed on the active region, first air gaps disposed between the first gate structures, second gate structures disposed on the field region, second air gaps disposed between the second gate structures, and an interlayer insulating layer disposed on the first gate structures, the first air gaps, the second gate structures, and the second air gaps. A lowermost level of the second air gaps is lower than a lowermost level of the first gate structures.
Abstract:
In one embodiment a semiconductor device includes odd contacts and respective odd lines. Spacers are formed on sidewalls of the odd lines and even openings for even lines are formed by performing an etching process. Even contacts are formed in the even openings and then even lines are formed.
Abstract:
A method of fabricating an integrated circuit device includes forming first and second mask structures on respective first and second regions of a feature layer. Each of the first and second mask structures includes a dual mask pattern and an etch mask pattern thereon having an etch selectivity relative to the dual mask pattern. The etch mask patterns of the first and second mask structures are etched to partially remove the etch mask pattern from the second mask structure. Spacers are formed on opposing sidewalls of the first and second mask structures. The first mask structure is selectively removed from between the spacers in the first region to define a first mask pattern including the opposing sidewall spacers with a void therebetween in the first region, and a second mask pattern including the opposing sidewall spacers with the second mask structure therebetween in the second region.
Abstract:
A method of manufacturing a semiconductor device includes forming a plurality of strings spaced a first distance from each other, each string including first preliminary gate structures spaced a second distance, smaller than the first distance, between second preliminary gate structures, forming a first insulation layer to cover the first and second preliminary gate structures, forming an insulation layer structure to fill a space between the strings, forming a sacrificial layer pattern to partially fill spaces between first and second preliminary gate structures, removing a portion of the first insulation layer not covered by the sacrificial layer pattern to form a first insulation layer pattern, reacting portions of the first and second preliminary gate structures not covered by the first insulation layer pattern with a conductive layer to form gate structures, and forming a capping layer on the gate structures to form air gaps between the gate structures.
Abstract:
A method of forming a nonvolatile memory device includes providing conductive pillars disposed in a first insulating layer and disposed on a semiconductor substrate, providing an etch stop layer on the first insulating layer, disposing a mold layer on the etch stop layer, and forming grooves in the mold layer. The grooves respectively extend over the conductive pillars in a first direction. The method further includes patterning the etch stop layer using the grooves to form holes respectively corresponding to the conductive pillars, and filling a metal into the grooves and the holes. The metal in the holes contacts the conductive pillars.
Abstract:
A semiconductor device includes a substrate, a plurality of gate structures, a first insulating interlayer pattern, and a second insulation layer pattern. The substrate has an active region and a field region, each of the active region and the field region extends in a first direction, and the active region and the field region are alternately and repeatedly arranged in a second direction substantially perpendicular to the first direction. The gate structures are spaced apart from each other in the first direction, each of the gate structures extends in the second direction. The first insulation layer pattern is formed on a portion of a sidewall of each gate structure. The second insulation layer pattern covers the gate structures and the first insulation layer pattern, and has an air tunnel between the gate structures, the air tunnel extending in the second direction.
Abstract:
A method for fabricating a semiconductor device having fine contact holes is exemplary disclosed. The method includes forming an isolation layer defining active regions on a semiconductor substrate. An interlayer dielectric layer is formed on the semiconductor substrate having the isolation layer. First molding patterns are formed on the interlayer dielectric layer. Second molding patterns positioned between the first molding patterns and spaced apart therefrom are also formed. A mask pattern surrounding sidewalls of the first and second molding patterns is formed. Openings are formed by removing the first and second molding patterns. Contact holes are formed by etching the interlayer dielectric layer using the mask pattern as an etching mask.