摘要:
The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.
摘要:
An array of long carbon nanotubes (i.e. an array where the average length of the nanotubes is greater than 0.5 millimeters) is prepared by exposing a supported catalyst at elevated temperature to a gas mixture of hydrocarbon, inert gas, and a relatively low percentage of hydrogen. Addition of water vapor to the gas mixture may result in an increase in the length of the nanotubes, an increase the rate of growth, and a decrease in contamination of the array by amorphous carbon. The temperature and growth time are also chosen to minimize the amount of amorphous carbon that forms on the array. Fibers spun from the array have a higher tensile strength compared to known CNT fibers.
摘要:
An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTixRu1-xO3 layer.
摘要:
A process is disclosed of preparing a template layer of a biaxially oriented material by ion beam assisted deposition upon a length of a substrate within a vacuum deposition chamber, by passing a length of substrate across a cooling block within a vacuum deposition chamber, with the cooling block configured to contact the substrate and passing a cooled liquid or gas through said cooling block during deposition of said layer of biaxially oriented material by ion beam assisted deposition upon said length of substrate. Also, a process is disclosed of preparing a template layer of a biaxially oriented material by ion beam assisted deposition upon a length of a substrate within a vacuum deposition chamber, by contacting a substrate with a cooled gas from the group of argon, oxygen, nitrogen during the ion beam assisted deposition of the biaxially oriented material within the vacuum deposition chamber, the cooled gas exiting a series of openings in a cooling block within the vacuum deposition chamber, the cooling block configured to contact the substrate.
摘要:
Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.
摘要:
A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
摘要:
A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.
摘要:
A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100° C. This combination produces high concentrations of dopants, while minimizing the defect concentration.
摘要:
A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.
摘要:
A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.