摘要:
A MEMS (Microelectromechanical system) device is described. The device includes an array of MEMS elements with addressing lines and MEMS switches configured to selectively connect the addressing lines to a ground or other potential in the event of an over-voltage, such as during an ESD event. The arrangement is particularly advantageous for protecting the array, because the MEMS switches can be formed using substantially the same processing steps which are used to form the array.
摘要:
A MEMS (Microelectromechanical system) device is described. The device includes an array of MEMS elements with addressing lines and MEMS switches configured to selectively connect the addressing lines to a ground or other potential in the event of an over-voltage, such as during an ESD event. The arrangement is particularly advantageous for protecting the array, because the MEMS switches can be formed using substantially the same processing steps which are used to form the array.
摘要:
MEMS varactors capable of handling large signals and/or achieving a high capacitance tuning range are described. In an exemplary design, a MEMS varactor includes (i) a first bottom plate electrically coupled to a first terminal receiving an input signal, (ii) a second bottom plate electrically coupled to a second terminal receiving a DC voltage, and (iii) a top plate formed over the first and second bottom plates and electrically coupled to a third terminal. The DC voltage causes the top plate to mechanically move and vary the capacitance observed by the input signal. In another exemplary design, a MEMS varactor includes first, second and third plates formed on over one another and electrically coupled to first, second and third terminals, respectively. First and second DC voltages may be applied to the first and third terminals, respectively. An input signal may be passed between the first and second terminals.
摘要:
This disclosure provides implementations of electromechanical systems resonator structures, devices, apparatus, systems, and related processes. In one aspect, a sacrificial layer is deposited on an insulating substrate. A lower electrode layer is formed proximate the sacrificial layer. A piezoelectric layer is deposited on the lower electrode layer. An upper electrode layer is formed on the piezoelectric layer. At least a portion of the sacrificial layer is removed to define a cavity such that at least a portion of the lower electrode layer is spaced apart from the insulating substrate.
摘要:
This disclosure provides systems, methods, and apparatus for encapsulated electromechanical systems. In one aspect, a release path includes a release hole through an encapsulation layer. The release path exposes a portion of a first sacrificial layer that extends beyond a second sacrificial layer in a horizontal direction. This allows the first sacrificial layer and the second sacrificial layer to later be etched through the release path. The corresponding electromechanical system device includes a shell layer encapsulating a mechanical layer. A conformal layer seals a release hole that extends through a shell layer. A portion of the conformal layer blocks the opening of the release passage within the release hole. The release passage has substantially the same vertical height as a gap that defines the spacing between the mechanical layer and a substrate.
摘要:
One embodiment includes display comprising a light modulator configured to display a portion of an image such as a reflective light modulator, a light emitter configured to display the portion of the image and a circuit configured to selectively provide signals to at least one of the light modulator and the light emitter indicative of the portion of the image. In one such embodiment, an active matrix provides a simple, efficient drive for such devices. Other embodiments include methods of making and driving such devices.
摘要:
One embodiment includes display comprising a light modulator configured to display a portion of an image such as a reflective light modulator, a light emitter configured to display the portion of the image and a circuit configured to selectively provide signals to at least one of the light modulator and the light emitter indicative of the portion of the image. In one such embodiment, an active matrix provides a simple, efficient drive for such devices. Other embodiments methods of making and driving such devices.
摘要:
MEMS varactors capable of handling large signals and/or achieving a high capacitance tuning range are described. In an exemplary design, a MEMS varactor includes (i) a first bottom plate electrically coupled to a first terminal receiving an input signal, (ii) a second bottom plate electrically coupled to a second terminal receiving a DC voltage, and (iii) a top plate formed over the first and second bottom plates and electrically coupled to a third terminal. The DC voltage causes the top plate to mechanically move and vary the capacitance observed by the input signal. In another exemplary design, a MEMS varactor includes first, second and third plates formed on over one another and electrically coupled to first, second and third terminals, respectively. First and second DC voltages may be applied to the first and third terminals, respectively. An input signal may be passed between the first and second terminals.
摘要:
A TFT includes a substrate and a first semiconductor layer overlying the substrate. A portion of the first semiconductor layer is a channel region of the TFT. The TFT also includes spaced-apart first and second source/drain structures overlying the first semiconductor layer. From a plan view of the TFT, the channel region lies between the first source/drain structure and the second source/drain structure. The TFT further includes a gate dielectric layer overlying the channel region and the first and second source/drain structures, and a gate electrode overlying the first gate dielectric layer. A process for forming the TFT includes forming first and second metal-containing structures over first and second semiconductor layers. The process also includes removing the portion of the second semiconductor layer lying between the first and second source/drain structures. A gate dielectric layer and a gate electrode are formed within the spaced-apart first and second source/drain structures.
摘要:
Higher capacitance density is achieved by increasing a surface area of a capacitor. A larger surface area may be obtained by forming isotropic ball shapes (a concave surface) in the trenches on the semiconductor die. The concave surfaces are fabricated by depositing bilayers of amorphous-silicon and silicon oxide. Openings are patterned in the silicon oxide hard mask for trenches. The openings are transferred to the amorphous-silicon layers through isotropic etching to form concave surfaces. Conducting, insulating, and conducting layers are deposited on the concave surfaces of the trenches by atomic layer deposition.