摘要:
A variable resistance memory device includes a plurality of first conductive layer pattern, a plurality of second conductive layer patterns over the first conductive layer patterns, and a plurality of lower cell structures including a switching element and a variable resistance element, the lower cell structures being formed at intersections at which the first conductive layer patterns and the second conductive layer patterns overlap each other. The first conductive layer patterns, the second conductive layer patterns and the lower cell structures serves as one of a memory cell, a first dummy pattern structure and a second dummy pattern structure. The first dummy pattern structure is formed on both edge portions in the first direction, and the second conductive layer pattern of the first dummy pattern structure protrudes in the first direction from a sidewall of the lower cell structure thereunder, and the second dummy pattern structure is formed on both edge portions in the second direction, and the first conductive layer pattern of the second dummy pattern structure protrudes in the second direction from a sidewall of the lower cell structure thereon. Failures of the variable resistance memory device due to the etch residue may decrease.
摘要:
A variable resistance memory device includes a plurality of first conductive lines, each of the first conductive lines extends in a first direction, a plurality of second conductive lines are above the first conductive lines, and each of the second conductive lines extend in a second direction transverse to the first direction. A plurality of first memory cells are at intersections where the first and second conductive lines overlap each other, each of the first memory cells including a first variable resistance structure having a first variable resistance pattern, a first sacrificial pattern and a second variable resistance pattern sequentially stacked in the first direction on a first plane. A plurality of third conductive lines are above the second conductive lines, each of the third conductive lines extend in the first direction, and a plurality of second memory cells are at intersections where the second and the third conductive lines overlap each other. Each of the second memory cells includes a second variable resistance structure having a third variable resistance pattern, a second sacrificial pattern and a fourth variable resistance pattern sequentially stacked in the first direction on second plane.
摘要:
A variable resistance memory device includes a plurality of first conductive lines, a plurality of second conductive lines, a plurality of memory cells, a plurality of first air gaps and a plurality of second air gaps. The first conductive line extends in a first direction. The second conductive line is over the first conductive line and extends in a second direction crossing the first direction. The memory cell includes a variable resistance device. The memory cell is located at an intersection region of the first conductive line and the second conductive line. The first air gap extends in the first direction between the memory cells. The second air gap extends in the second direction between the memory cells.
摘要:
A variable resistance memory device, and methods of manufacturing the same, include a plurality of first conductive structures extending in a first direction, a plurality of second conductive structures extending in a second direction crossing the first direction over the first conductive structures, the second conductive structures, and a plurality of memory cells that are formed at intersections at which the first conductive structures and the second conductive structures overlap each other, and each includes a selection element and a variable resistance element sequentially stacked. An upper surface of each of the first conductive structures has a width in the second direction less than a width of a bottom surface of each of the selection elements.
摘要:
A resistive memory device includes a plurality of memory cell pillars arranged in a line in one direction and each having a memory layer and a top electrode layer connected to the memory layer, a top conductive line having a plurality of protrusions extending downwardly and between which pockets in the bottom of the top conductive line are defined, and a plurality of insulating pillars. The protrusions of the top conductive line face and are electrically connected to the memory cell pillars, respectively, so as to be electrically connected to the memory layer through the top electrode layer of the memory cell pillar. The insulating pillars extend from insulating spaces, between side wall surfaces of the memory layers and top electrode layers of the memory cell pillars, into the pockets in the bottom of the top conductive line.
摘要:
A transparent conductive layer includes a substrate, a first conductive layer disposed on the substrate, and a second conductive layer disposed on the first conductive layer, wherein the second conductive layer comprises a textured surface and an opening which exposes the first conductive layer, wherein the opening comprises a diameter of about 1 micrometer to about 3 micrometers. Also disclosed is a method of manufacturing the transparent conductive layer and a photoelectric device.
摘要:
A display substrate includes a soda-lime glass substrate, a barrier pattern, and first, second and third conductive patterns. The soda-lime glass substrate has a pixel area. The first conductive pattern includes a gate line formed on the soda-lime glass substrate and from a first conductive layer. The barrier pattern is formed between the first conductive pattern and the soda-lime glass substrate. The second conductive pattern includes a data line crossing the gate line. The data line is formed on the first conductive pattern and from a second conductive layer. The third conductive pattern includes a pixel electrode formed in the pixel area of the soda-lime glass substrate. The pixel electrode is formed on the second conductive pattern and from a third conductive layer.
摘要:
Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
摘要:
A inductively coupled plasma apparatus includes reaction chamber in which a substrate is loaded, and a double comb type antenna structure including first linear antennas and second linear antennas respectively arranged horizontally to pass through the reaction chamber inside the reaction chamber. The first and second linear antenna are alternately aligned each other. First ends the first linear antennas are protruded out of the reaction chamber and coupled to each other so as to be coupled to a first induced RF power, and first ends of the second linear antennas are protruded out of the reaction chamber in opposition to the first ends of the first linear antennas and coupled to each other so as to be coupled to a second induced RF power. Plasma uniformity is improved and superior plasma uniformity is maintained by adjusting a distance between antennas according to a size of the substrate.
摘要:
Provided is a method of manufacturing a photovoltaic device using a Joule heating-induced crystallization method. The method includes: forming a first conductive pattern on a substrate; forming a photoelectric conversion layer on the substrate having the first conductive pattern; and crystallizing at least part of the photoelectric conversion layer by applying an electric field to the photoelectric conversion layer, wherein the photoelectric conversion layer includes a first amorphous semiconductor layer containing first impurities, a second intrinsic, amorphous semiconductor layer, and a third amorphous semiconductor layer containing second impurities.