摘要:
The present invention provides a MISFET with a replacement gate electrode, which ensures large ON-current. A semiconductor device, in which on the substrate, first and second field effect transistors are formed, the first field effect transistor is a replacement gate type field effect transistor, and the length of the overlap between a gate electrode and a source/drain diffusion zone of the first field effect transistor correspond to that between a gate electrode and a source/drain diffusion zone of the second field effect transistor.
摘要:
In a miniaturized field effect transistor, the roughness of the interface between a gate dielectric film and a gate electrode is controlled on an atomic scale. The thickness variation of the gate dielectric film is lowered, whereby a field effect transistor with high mobility is manufactured. An increase in the mobility in the field effect transistor can be achieved not only in the case of using a conventional SiO2 thermal oxide film as the gate dielectric film but also in the case of using a high dielectric material for the gate dielectric film.
摘要:
A spark plug (100) including a center electrode (130) and a ground electrode (140), which is formed by joining a ground electrode chip (143) to a ground electrode base material (141) via an intermediate member (142). A method for producing the spark plug (100) includes providing a projecting portion (142p) on the intermediate member (142), and projection-welding the intermediate member (142) to the ground electrode base material (141) by means of the projecting portion (142p), to thereby join the intermediate member 142 to the ground electrode base material (141). Further, the intermediate member (142) of the spark plug (100) includes a cylindrical columnar portion (142e) which is joined to the ground electrode chip (143), and a flange portion (142d) which is joined to the ground electrode base material (141) and which flange portion (142d) has a diameter greater than that of the cylindrical columnar portion (142e).
摘要:
There is provided a spark section (80) of needle-like shape protruding from an inner surface (33) of a ground electrode (30) to define a spark gap between the spark section and an electrode tip on a center electrode. The spark section (80) has a noble metal member (81) and an intermediate member (86) joined to each other. The materials of the noble metal member (81) and the intermediate member (86) are selected in such a manner that the thermal conductivity of the intermediate member (86) is lower than that of the noble metal member (81). This limits heat radiation through the heat radiation passage from the noble metal member (81) through the intermediate member (86) to the ground electrode (30) so as to maintain the noble metal member (81) at a higher temperature than conventional types and reduce a quenching effect of the noble metal member (81) on a flame core generated in the spark gap for improvement in ignition performance.
摘要:
A spark plug (100) including a center electrode (130) and a ground electrode (140), which is formed by joining a ground electrode chip (143) to a ground electrode base material (141) via an intermediate member (142). A method for producing the spark plug (100) includes providing a projecting portion (142p) on the intermediate member (142), and projection-welding the intermediate member (142) to the ground electrode base material (141) by means of the projecting portion (142p), to thereby join the intermediate member 142 to the ground electrode base material (141). Further, the intermediate member (142) of the spark plug (100) includes a cylindrical columnar portion (142e) which is joined to the ground electrode chip (143), and a flange portion (142d) which is joined to the ground electrode base material (141) and which flange portion (142d) has a diameter greater than that of the cylindrical columnar portion (142e).
摘要:
There is provided a method for producing a spark plug in which welding strength between a noble metal tip and an electrode joined by laser welding can be restrained from becoming weak. A noble metal tip (90) to be joined to a center electrode (2) or ground electrode of a spark plug to form a spark discharge gap is resistance-welded to each electrode containing no noble metal and then laser-welded. In the noble metal tip (90) exposed under a severe environment involving spark discharge, a molten portion (80) formed in such a manner that a portion of the noble metal tip (90) and a portion of the electrode are melted by laser welding and a non-molten portion (95) on the noble metal tip (90) side are apt to be peeled from each other in a boundary surface (83) between the molten portion (80) and the non-molten portion (95). The noble metal content in the molten portion (80) however becomes higher because a flange portion is formed in a bottom portion by pressing force applied on the noble metal tip (90) at the time of resistance welding and then irradiated with a laser beam. Accordingly, peeling can be prevented from occurring in the boundary surface (83).
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.
摘要:
A gate insulating film on a silicon substrate includes a SiO2 film and a high-k film. The high-k film contains a transition metal, aluminum, silicon, and oxygen. The concentration of silicon in the high-k film is higher than the concentrations of the transition metal and aluminum in the vicinity of the interface with the SiO2 film and the vicinity of the interface with the gate electrode. Furthermore, it is preferable that the concentration of silicon is the highest at least in one of the vicinity of the interface with the SiO2 film or the vicinity of the interface with the gate electrode, gradually decreases with distance from these interfaces, and becomes the lowest in a central part of the high-k film.
摘要:
In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
摘要:
Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel stopper regions over the principal surface portions below the element separating insulating film of the substrate by introducing an impurity into all the surface portions including the active regions and the inactive regions of the substrate after the first mask and the second mask have been removed.