摘要:
The present invention, a silicon-on-insulator (SOI) substrate and its fabrication method, is suited to the wafer-bonding method. A pre-oxidation treatment accompanying the oxidation treatment and the adhesive thermal treatment to prevent metal impurities from polluting semiconductor wafers. Before an oxide layer is thermally grown on one wafer or after two bonded wafers are subjected to a adhesive thermal treatment at a temperature T1, the pre-oxidation treatment is performed at a temperature of T2, which satisfies the relation equation of T1-300.ltoreq.T2.ltoreq.T1-100 (.degree.C.). Water steam, pure oxygen, or diluted oxygen, is conducted into the furnace, in which the pre-oxidation treatment is performed in an oxidation ambient. Accordingly, an oxide film having a predetermined thickness is formed on the surface of the SOI substrate serving as a barrier for preventing metal impurities, such as Fe, Cr, or the like, from invading the substrate and degrading the electrical characteristics thereof.
摘要:
An evaluation method to efficiently and precisely measure high-density oxygen-precipitation defects in the bulk of a silicon wafer is disclosed. A number of silicon wafers containing oxygen-precipitation defects are provided. The SPV method is utilized to measure the diffusion length of the minority carriers in the silicon wafers. The density of oxygen-precipitation defects is measured by the infrared tomography method. The diffusion length and the defect density are plotted and are found to be correlated. That is, the SPV measured diffusion length of the minority carriers and the defect density obtained by the infrared tomography method have specific relationships. A constant A can then be obtained from the plot. The diffusion length L of minority carriers in silicon wafers provided for evaluation is measured by the SPV method. Finally, the bulk oxygen-precipitation defects density can be calculated from the formula A.times.L.sup.-2. The present invention can precisely obtain the defect density in very short time. Moreover, the bulk density can be obtained since the silicon wafers need not be broken.
摘要:
A surface processing method for evaluating semiconductor substrate is intended to clean a semiconductor substrate, which has the surface of a silicon layer exposed by removing the epitaxial layer by an acid mixture, by buffered HF and then to perform SC-1 cleaning. Placing the substrate for about 2 hours after the processing, then the varying rate of the SPV value is quite stable at about 5%, so that the minor carrier diffusion length can be measured with high precision. Furthermore, the lead time of evaluating a semiconductor substrate can be significantly reduced over the prior-art method.
摘要:
An evaluation method of a silicon wafer by correctly calculating the Fe--B concentration is disclosed. Even when the SPV method is utilized, the over-estimated Fe--B concentration in silicon wafers containing oxygen-precipitation defects can be avoided. Diffusion lengths Lb and La of minority carriers in a P-type silicon wafer before and after an activation step are measured by the SPV method. A value of (Lb--La)/Lb calculated from La and Lb is compared with a constant C which is read from the plot of Lb vs. (Lb--La). If (Lb--La)/Lb is smaller than constant C, the concentration calculation is terminated since there are oxygen-precipitation defects in the silicon wafer. The calculation is carried out for silicon wafers containing no oxygen-precipitation defects, and is based on the formula of Fe--B concentration (cm.sup.-3).apprxeq.1.times.10.sup.16 (La.sup.-2 --Lb.sup.-2). Therefore, the Fe--B concentration can be precisely determined even though the silicon wafers in which a high-density of oxygen-precipitation defects exist are mixed together with silicon rods.
摘要:
A peeling jig is provided for peeling a bonded wafer having voids formed in bonding surfaces so as to rebond, which does not injure the bonding surfaces or cause the adherence of particles thereto. The peeling jig includes a wedge portion 1a for inserting into the bonding surfaces, and a flat portion provided at the both sides of the base of the wedge portion. The apex angle of the wedge portion, when the chamfered angles at the bonding sides of the supporting substrate and active wafer of the bonded wafer to be separated are respectively .alpha. and .beta., is .theta. and .theta.>.alpha.+.beta.. When the wedge portion is inserted into the bonding surfaces, the right and left inclined surfaces of the wedge portion are in contact with the peripheries of the chamfered portions, and then chamfered portions are flared. Accordingly, the bonded wafer is separated by the wedge portion into the supporting substrate and the active wafer without being contacted with the bonding surfaces until the flat portions are in contact with the periphery of the bonded wafer.
摘要:
A method of direct-bonding semiconductor wafers limits the time interval between a bonding step and a bonding anneal step or performs a baking step between the bonding and bonding anneal steps at a predetermined temperature for a predetermined time interval to prevent the formulation of voids on the edge regions of the wafers. The method for fabricating laminated semiconductor wafers includes a bonding step to fit together two polished semiconductor wafers by bonding jigs, and a succeeding bonding anneal step to laminate the wafers. In the method the bonding anneal step is preferably carried out within an hour following the bonding step; or a baking step at a predetermined temperature for a predetermined time interval is carried out between the bonding step and the bonding anneal step. Further, the method can prevent heavy metal impurities attached to the surface of the wafer from diffusing into the wafer by baking the wafer for over 5 minutes at above 100.degree. C. in the period between the bonding step and the annealing step.
摘要:
To provide a book binding kit easy for a user to fabricate an original book, it includes one set composed of a paper having a printing surface and an adhesive surface to which a release paper having a cut line to form a cover member is attached, a front cover paperboard to be attached to a front cover region of the adhesive surface, a backbone paperboard to be attached to a backbone region of the adhesive surface, a back cover paperboard to be attached to a back cover region of the adhesive surface, and a body of pages made of a plurality of sheets bound together at one end. The release paper is divided into a front cover release paper, a front cover groove release paper, a backbone release paper, a back cover groove release paper, a back cover release paper, and a flap release paper.
摘要:
A method of forming an epitaxial layer to increase flatness of an epitaxial silicon wafer is provided. In particular, a method of controlling the epitaxial layer thickness in a peripheral part of the wafer is provided. An apparatus for manufacturing an epitaxial wafer by growing an epitaxial layer with reaction of a semiconductor wafer and a source gas in a reaction furnace comprising: a pocket in which the semiconductor wafer is placed; a susceptor fixing the semiconductor; orientation-dependent control means dependent on a crystal orientation of the semiconductor wafer and/or orientation-independent control means independent from the crystal orientation of the semiconductor wafer, wherein the apparatus may improve flatness in a peripheral part of the epitaxial layer.
摘要:
A method of forming an epitaxial layer to increase flatness of an epitaxial silicon wafer is provided. In particular, a method of controlling the epitaxial layer thickness in a peripheral part of the wafer is provided. An apparatus for manufacturing an epitaxial wafer by growing an epitaxial layer with reaction of a semiconductor wafer and a source gas in a reaction furnace comprising: a pocket in which the semiconductor wafer is placed; a susceptor fixing the semiconductor; orientation-dependent control means dependent on a crystal orientation of the semiconductor wafer and/or orientation-independent control means independent from the crystal orientation of the semiconductor wafer, wherein the apparatus may improve flatness in a peripheral part of the epitaxial layer.
摘要:
Disclosed is a book-like disc casing which comprises a series of a front cover, a spine and a rear cover, made of cardboard, and a plurality of pieces of paper, the front cover, spine and rear cover being folded to be like a book with the pieces of paper interleaved between the front cover and the rear cover. At least one of the front and rear covers has an intermediate member and a lining member laid on each other to form a lamination inside. The intermediate member has a disc accommodating space formed therein, and the lining member has a line of perforations and creases intercepting the line of perforations, which is partly in conformity with the disc accommodating space, thereby facilitating the making of an opening in the lining member to permit the taking-out of the disc from the disc accommodating space.