摘要:
A double-sided circuit board of which a solder conductor is prevented from deformation in a cycling test so as to maintain high connection reliability, comprises an insulating layer 2 made of an organic high molecular weight resin and a circuit 3 provided on each side of the insulating layer 2, the circuits 3 on both sides being electrically connected through via-holes filled with a conductor 4 made of solder having a metal powder 6 dispersed therein.
摘要:
A plurality of double-sided circuit boards 1 in which a circuit 4 is provided on either side of an insulating layer 3 comprising an organic high molecular resin with an alloy foil 2 as a basic substance, and two circuits 4 are electrically connected by a via with a soldered conductor 5a filled therein are laminated via an adhesive layer 6. The adhesive layer 6 has a bore opened at a predetermined position of a portion in direct contact with the circuits 4 of two double-sided circuit boards 1. A bore portion is provided with a soldered conductor 7. The circuits 4 of the two double-sided circuit boards 1 are electrically connected by the soldered conductor 7.
摘要:
A wafer-scale package structure in which a circuit board for rearranging electrode pads of a wafer is laminated on the wafer integrally. The circuit board can be divided into individual chip-size packages (CSPS) and which includes a layer of polyimide resin, and connection between the wafer and the circuit board is performed by solder bump, while the circuit board is stuck on the wafer with an adhesive.
摘要:
The present invention relates to and provides a fuel cell in which sealing can be reliably made for each unit cell, thereby, enabling thinning, facilitating maintenance, and enabling miniaturization and weight reduction, and enabling free shape design. A fuel cell of the present invention is characterized by comprising a sheet-like solid polymer electrolyte 1 and a pair of electrode plates 2, 3 arranged on both sides of the solid polymer electrolyte 1, and further comprising a pair of metallic plates 4, 5 arranged on both sides of the electrode plates 2, 3, and provided flow path grooves 9, and inlets 4c, 5c and outlets communicating with the flow path grooves, wherein the peripheral edges of the metallic plates 4, 5 are mechanically sealed with an insulation material 6 interposed between the metallic plates.
摘要:
A fuel cell having a unit cell formed of a sheet-like solid polymer electrolyte, its cathode-side electrode plate, an anode-side electrode plate, an oxygen-containing gas supply unit for supplying an oxygen-containing gas to the cathode-side electrode plate, and a hydrogen gas flow path unit for supplying a hydrogen gas to the anode-side electrode plate, regarding the unit cell which is to be a final stage of hydrogen gas supply, a flow path sectional area of the hydrogen gas flow path unit is not more than 1% of an area of the anode-side electrode plate and, at the same time, a discharge control mechanism for discharging a gas at 0.02 to 4% by volume relative to a hydrogen gas supplied to the unit cell is provided at an outlet of the hydrogen gas flow path unit.
摘要:
The present invention relates to and provides a fuel cell in which sealing can be reliably made for each unit cell, thereby, enabling thinning, facilitating maintenance, and enabling miniaturization and weight reduction, and enabling free shape design. A fuel cell of the present invention is characterized by comprising a sheet-like solid polymer electrolyte 1 and a pair of electrode plates 2, 3 arranged on both sides of the solid polymer electrolyte 1, and further comprising a pair of metallic plates 4, 5 arranged on both sides of the electrode plates 2, 3, and provided flow path grooves 9, and inlets 4c, 5c and outlets communicating with the flow path grooves, wherein the peripheral edges of the metallic plates 4, 5 are mechanically sealed with an insulation material 6 interposed between the metallic plates.
摘要:
A substrate B for use in production of a semiconductor device is used, which substrate includes an adhesive sheet 50 having a base layer 51 and an adhesive layer 52, and a plurality of independently provided electrically conductive portions 20. A semiconductor element having electrodes 11 formed thereon is firmly fixed onto the substrate B, and upper portions of the plurality of electrically conductive portions 20 and the electrodes 11 of the semiconductor element 10 are electrically connected by using wires 30. The semiconductor element 10, wires 30 and electrically conductive portions 20 are sealed by using a sealing resin 40. Each of the electrically conductive portions 20 has overhanging portions 20a, and a side face 60a of the electrically conductive portion 20 is roughened, thus enhancing the joining strength between each electrically conductive portion 20 and the sealing resin 40.
摘要:
A foam filling material for wind power generator blades is obtained by forming a foam filling composition containing a polymer and a foaming agent into a given shape so as to be positioned in an interior space of a wind power generator blade, and is capable of filling the interior space of the wind power generator blade by foaming.
摘要:
A series of semiconductor devices includes: (i) a plurality of semiconductor elements having electrodes; (ii) a plurality of electrically conductive parts formed around and electrically connected to each of the semiconductor elements; and (iii) a sealing resin in which the plurality of semiconductor elements and the plurality of electrically conductive parts are sealed and an electrode-free side of each semiconductor element and an unwired side of each electrically conductive part are formed on a single flat surface of a removable substrate.
摘要:
A semiconductor device P includes a die pad 20, a semiconductor element 30 which is loaded on the die pad 20, and a sealing resin 40. A plurality of electrically conductive portions 10 each having a layered structure including a metal foil 1 comprising copper or a copper alloy, and electrically conductive portion plating layers 2 provided at both upper and lower ends of the metal foil 1 are arranged around the die pad 20. The die pad 20 has a lower die pad plating layer 2b, and the semiconductor element 30 is loaded on the die pad 20 comprising such a die pad plating layer 2b. Electrodes 30a provided on the semiconductor element 30 are electrically connected with top ends of the electrically conductive portions 10 via wires 3, respectively. The lower electrically conductive portion plating layers 2 of the electrically conductive portions 10 and the die pad plating layer 2b of the die pad 20 are exposed outside from the sealing resin 40 on their back faces.