摘要:
A magnetoresistor with an ordered double perovskite structure is an oxide crystal which has an ordered double perovskite crystal structure represented by the general formula of A.sub.2 BB'O.sub.6, wherein A stands for Sr atoms, B for Fe atoms and B' for Mo or Re atoms and wherein the Fe atoms and the Mo or Re atoms are alternately arranged and which exhibits negative magnetoresistive characteristics.
摘要:
A manganese oxide material has MnO.sub.3 as a matrix. It is an antiferromagnetic insulator and, when subjected to an electrical current or electric field, it is transformed into a ferromagnetic metal.
摘要:
Proposed is a grain boundary-free crystalline body of a perovskite structure having a chemical composition of the formula Pr.sub.1-x M.sub.x MnO.sub.3, in which M is calcium or strontium and the subscript x is a number of 0.3 to 0.5, which exhibits a magnetoresistance behavior with a phase transition between an insulator phase and a ferromagnetic metallic phase accompanied by the phenomenon of hysteresis. This grain boundary-free crystalline body can be obtained by subjecting a sintered body of a powder blend consisting of the oxides of praseodymium, manganese and calcium or strontium to a crystal growing treatment by the floating zone-melting method in an atmosphere of oxygen.
摘要:
A manganese oxide material that can be used as a switching device or as a memory device or the like is formed of Mn-based oxide material. The Mn-based oxide material exhibits insulator-to-metal transitions induced by irradiating the material with laser light.
摘要:
To provide a tunnel junction device having a high MR ratio even at room temperature, a tunneling film as a nonmagnetic layer of three-layer structure of LaMnO3/SrTiO3/LaMnO3 is arranged between a ferromagnetic metal material La0.6Sr0.4MnO3 (12) and a ferromagnetic metal film material La0.6Sr0.4MnO3 (14). The tunneling film comprises two unit layers of LaMnO3 (13A) arranged on the ferromagnetic metal material La0.6Sr0.4MnO3 (12); five unit layers of SrTiO3 (13B); and two unit layers of LaMnO3 (13C) arranged at the interface between the SrTiO3 (13B) and the ferromagnetic metal film material La0.6Sr0.4MnO3 (14).
摘要:
Disclosed is a high-pressure generation apparatus, which comprises a pair of columnar-shaped anvils disposed in opposed relation to one another to define a pressure-generating space therebetween. The anvils are adapted to be applied with a load therebetween to generate a high pressure in the pressure-generating space. Each of the anvils has a top portion formed in an approximately circular truncated cone shape, and the top portion has a central region formed with a depression having a side surface which extends obliquely outward. The high-pressure generation apparatus also includes a cylindrical capsule disposed in a central area of the pressure-generating space, and a laminated member formed by alternately laminating a doughnut-shaped metallic thin plate and a doughnut-shaped insulating member along the outer periphery of the capsule. The improved shape of the depression makes it possible to significantly reduce damages of the components. In addition, the laminated member formed of the metallic thin plate and the insulating member originally used for sealing the pressure-generating space makes it possible to generate a higher pressure.
摘要:
The present invention provides a rare earth element-doped optical fiber amplifier having a function which allows to omit an optical isolator component, and a method for providing the optical non-reciprocity using the same. In the optical fiber, the optical fiber matrix material is a ferroelectric solid state material, and the ferroelectric solid state material is doped by a rare earth element such as erbium (Er) or thulium (Tm). The optical fiber is characterized by an optical amplification function and an optical non-reciprocity function.
摘要:
A tunnel junction device capable of controlling its spin retention is provided. The tunnel junction device includes a La0.6Sr0.4MnO3-δ electrode (12), a La0.6Sr0.4Mn1-yRuyO3-δ electrode (14), both as ferromagnetic (including ferrimagnetic) metal materials, and a LaAlO3-δ (electrically insulating layer) (13) arranged between the two electrodes (12) and (14).
摘要翻译:提供能够控制其自旋保留的隧道连接装置。 隧道结装置包括La 0.6 N 4 O 5 MnO 3-δ电极(12),La 0.6 N (14),均为铁磁性(包括(ⅲ)),(ⅲ) 铁氧体)金属材料和布置在两个电极(12)和(14)之间的LaAlO 3-δ(电绝缘层)(13)。
摘要:
A variable resistance element comprises a variable resistor of strongly-correlated material sandwiched between two metal electrodes, and the electric resistance between the metal electrodes varies when a voltage pulse is applied between the metal electrodes. Such a switching operation as the ratio of electric resistance between low and high resistance states is high can be attained by designing the metal electrodes and variable resistor appropriately based on a definite switching operation principle. Material and composition of the first electrode and variable resistor are set such that metal insulator transition takes place on the interface of the first electrode in any one of two metal electrodes and the variable resistor by applying a voltage pulse. Two-phase coexisting phase of metal and insulator phases can be formed in the vicinity of the interface between the variable resistor and first electrode by the work function difference between the first electrode and variable resistor.
摘要:
A variable resistance element comprises a variable resistor of strongly-correlated material sandwiched between two metal electrodes, and the electric resistance between the metal electrodes varies when a voltage pulse is applied between the metal electrodes. Such a switching operation as the ratio of electric resistance between low and high resistance states is high can be attained by designing the metal electrodes and variable resistor appropriately based on a definite switching operation principle. Material and composition of the first electrode and variable resistor are set such that metal insulator transition takes place on the interface of the first electrode in any one of two metal electrodes and the variable resistor by applying a voltage pulse. Two-phase coexisting phase of metal and insulator phases can be formed in the vicinity of the interface between the variable resistor and first electrode by the work function difference between the first electrode and variable resistor.