摘要:
A pattern forming material contains a block copolymer or graft copolymer and forms a structure having micro polymer phases, in which, with respect to at least two polymer chains among polymer chains constituting the block copolymer or graft copolymer, the ratio between N/(Nc-No) values of monomer units constituting respective polymer chains is 1.4 or more, where N represents total number of atoms in the monomer unit, Nc represents the number of carbon atoms in the monomer unit, No represents the number of oxygen atoms in the monomer unit.
摘要:
A pattern forming material contains a block copolymer or graft copolymer and forms a structure having micro polymer phases, in which, with respect to at least two polymer chains among polymer chains constituting the block copolymer or graft copolymer, the ratio between N/(Nc−No) values of monomer units constituting respective polymer chains is 1.4 or more, where N represents total number of atoms in the monomer unit, Nc represents the number of carbon atoms in the monomer unit, No represents the number of oxygen atoms in the monomer unit.
摘要:
A pattern forming material contains a block copolymer or graft copolymer and forms a structure having micro polymer phases, in which, with respect to at least two polymer chains among polymer chains constituting the block copolymer or graft copolymer, the ratio between N/(Nc−No) values of monomer units constituting respective polymer chains is 1.4 or more, where N represents total number of atoms in the monomer unit, Nc represents the number of carbon atoms in the monomer unit, No represents the number of oxygen atoms in the monomer unit.
摘要:
According to one embodiment, there is provided a method of forming a pattern, including forming a thermally crosslinkable molecule layer including a thermally crosslinkable molecule on a substrate, forming a photosensitive composition layer including a photosensitive composition on the thermally crosslinkable molecule layer, chemically binding the thermally crosslinkable molecule to the photosensitive composition by heating, selectively irradiating the photosensitive composition layer with energy rays, forming a block copolymer layer including a block copolymer on the photosensitive composition layer, and forming a microphase-separated structure in the block copolymer layer.
摘要:
An organic molecular memory of an embodiment includes a first conductive layer, a second conductive layer, and an organic molecular layer interposed between the first conductive layer and the second conductive layer, the organic molecular layer including charge-storage molecular chains or variable-resistance molecular chains, the charge-storage molecular chains or the variable-resistance molecular chains including fused polycyclic groups.
摘要:
According to one embodiment, a method of forming a pattern includes applying a block copolymer to a substrate, the block copolymer including a first block and a second block, the first block including polyacrylate or polymethacrylate having a side chain to which an alicyclic hydrocarbon group or a hydrocarbon group including a tertiary carbon is introduced, and the second block including polystyrene substituted with hydrocarbon or halogen at an α-position, causing the block copolymer to be phase-separated, irradiating the block copolymer with an energy beam to decompose the second block, and removing the second block with a developer to form a pattern of the first block.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer. A plurality of apertures penetrates the metal portion along the direction, each of the apertures viewed along the direction having equivalent circle diameters of not less than 10 nanometers and not more than 5 micrometers, and a Schottky barrier is provided between the second semiconductor layer and the metal portion.
摘要:
One embodiment of the present invention provides a semiconductor light-emitting element having both high light-extraction efficiency and excellent adhesion between a light-extraction surface and a sealing resin, and it also provides a process for production thereof. This element comprises a semiconductor multilayered film and a light-extraction surface. In the multilayered film, plural semiconductor layers and an active layer are stacked. The light-extraction surface is provided on the multilayered film, and plural micro-projections are formed thereon. These micro-projections have flat top faces parallel to the multilayered film, and they can be formed by an etching process. The etching process is performed by use of a dot pattern as a mask, and the dot pattern is formed by phase separation of a block copolymer.
摘要:
The present invention provides a photoelectric conversion element having high efficiency in propagating carrier excitation by use of enhanced electric fields. The photoelectric conversion element comprises a photoelectric conversion layer including two or more laminated semiconductor layers placed between two electrode layers, and is characterized by having an electric field enhancing layer placed between the semiconductor layers in the photoelectric conversion layer. The electric field enhancing layer is provided with a metal-made minute structure, and the minute structure is, for example, a porous membrane or a group of nano-objects such as very small spheres.
摘要:
According to one embodiment, a light-transmitting metal electrode includes a metal layer. The metal layer is provided on a major surface of a member and includes a metal nanowire and a plurality of openings formed with the metal nanowire. The thin layer includes a plurality of first straight line parts along a first direction and a plurality of second straight line parts along a direction different from the first direction. A maximum length of the first line parts along the first direction and a maximum length of the second line parts along the direction different from the first direction are not more than a wave length of visible light. A ratio of an area of the metal layer viewed in a normal direction of the surface to an area of the metal layer viewed in the normal direction is more than 20% and not more than 80%.