Abstract:
A resin composition for a semiconductor package according to an embodiment includes a resin composition comprising a resin and a filler provided in the resin, wherein the resin includes a soluble liquid crystal polymer resin, and wherein the filler has a negative coefficient of thermal expansion (negative CTE) and is provided in the soluble liquid crystal polymer resin.
Abstract:
A method for fabricating an epi wafer according to the embodiment comprises depositing an epi layer on a wafer in a first chamber; transferring the wafer to a second chamber connected to the first chamber; forming a protective layer on the wafer in the second chamber; and cooling the wafer in the second chamber.Further, an apparatus for fabricating an epi wafer according to the embodiment comprises a first chamber comprising an epi deposition part; a second chamber comprising a protective layer forming part and a cooling part; and a wafer transfer apparatus connected to lower portions of the first chamber and the second chamber.
Abstract:
A circuit board according to one embodiment comprises a first insulation layer, a circuit pattern on the first insulation layer, and a second insulation layer on the circuit pattern, wherein a heat transfer member is arranged inside the first insulation layer and/or the second insulation layer, and the heat transfer member is arranged while coming in contact with a side surface of the insulation layer.
Abstract:
An epitaxial wafer comprises an epitaxial layer disposed on a substrate. The epitaxial layer comprises first to third semiconductor layers. The third semiconductor layer has a thickness that is thicker than that of the first semiconductor layer. A second doping density of the second semiconductor layer is between a first doping density of the first semiconductor layer and a third doping density of the third semiconductor layer.
Abstract:
A circuit board, according to an embodiment, comprises: a first insulating layer; a second insulating layer disposed on one surface of the first insulating layer; and a third insulating layer disposed on the other surface of the first insulating layer. A circuit pattern is disposed on at least one insulating layer from among the first to third insulating layers, at least one insulating layer from among the first to third insulating layers comprises glass fiber, at least one insulating layer from among the first to third insulating layers does not comprise glass fiber, and the thicknesses of the first to third insulating layers are different from each other.
Abstract:
A circuit board according to an embodiment includes an insulating layer; and a circuit pattern disposed on the insulating layer, wherein the circuit pattern includes a copper foil layer disposed on the insulating layer, a first plating layer disposed on the copper foil layer, and a second plating layer disposed on the first plating layer, and wherein the copper foil layer has a thickness in a range of 2 μm to 5 μm.
Abstract:
A method for fabricating an epi wafer according to the embodiment comprises depositing an epi layer on a wafer in a first chamber; transferring the wafer to a second chamber connected to the first chamber; forming a protective layer on the wafer in the second chamber; and cooling the wafer in the second chamber.Further, an apparatus for fabricating an epi wafer according to the embodiment comprises a first chamber comprising an epi deposition part; a second chamber comprising a protective layer forming part and a cooling part; and a wafer transfer apparatus connected to lower portions of the first chamber and the second chamber.