Abstract:
Described herein are liquid crystal (LC) assemblies that are dimmable and techniques for manufacturing LC assemblies. In one example, an LC assembly comprises: a first curved glass panel, a second curved glass panel, and a liquid crystal panel having a first outer surface and a second outer surface, a layer of a liquid adhesive attaching the first curved glass panel and the first outer surface of the liquid crystal panel, and a film adhesive attaching the second curved glass panel and the second outer surface of the liquid crystal panel.
Abstract:
A phase difference film comprising one layer or multiple layers, wherein at least one layer thereof comprises a composition containing a polyester resin having arylated fluorene in a side chain, a relationship between phase differences Ro(450) and Ro(550) in an in-plane direction of the layer comprising the polyester resin is Ro(450)/Ro(550)≥1.22, and the layer(s) is drawn.
Abstract:
A circuit board includes, in order in a stacking direction, a first insulating layer, a second insulating layer in contact with the first insulating layer, and a conductor layer, the first insulating layer includes a liquid crystal polymer as a main component, and the second insulating layer includes a fluoropolymer including at least one of polytetrafluoroethylene and a perfluoroalkoxy alkane and includes a polyimide resin with an imidization rate of about 90% or more, the polyimide resin being present in an amount of about 0.5 parts or more by weight and less than about 20 parts by weight per 100 parts by weight of the fluoropolymer.
Abstract:
A fibrillated liquid crystal polymer powder containing fibrillated liquid crystal polymer particles. A paste containing a dispersion medium and the fibrillated liquid crystal polymer powder. A method of producing the fibrillated liquid crystal polymer powder. A resin multilayer substrate obtained by laminating a plurality of resin sheets including at least one layer of a liquid crystal polymer sheet. On a surface of at least one layer of the liquid crystal polymer sheet, a thickness adjustment layer made of a fibrillated liquid crystal polymer powder containing fibrillated liquid crystal polymer particles is provided in a region insufficient in thickness when at least the plurality of resin sheets are laminated.
Abstract:
The invention includes methods of reversibly tuning the effective pore size and/or solute rejection selectivity of a nanoporous lyotropic liquid crystal (LLC) polymer membrane. The membranes of the invention have high levels of pore size uniformity, allowing for size discrimination separation, and may be used for separation processes such as liquid-phase separations.
Abstract:
Certain example embodiments relate to a vehicle window (e.g., sunroof). Side-firing LEDs are provided between first and second substantially parallel substrates and emit light towards central regions of the window. A liquid-crystal inclusive switchable film is provided between the first and second substrates. The liquid crystals are sized such that light received from the LEDs is redirected in a direction substantially normal to major surfaces of the first and second substrates. The switchable film is operable in at least first and second modes, with the window in the first mode having a visible transmission of less than 1%, and with the window in the second mode having a visible transmission of 7-15%. The switchable film and the LEDs are operable independently of one another in connection with the LEDs emitting light and the switchable film controlling visible transmission therethrough.
Abstract:
The invention provides 3D PDLC composite layer structure comprising: an upper transparent resin substrate, a lower transparent resin substrate, an upper transparent conductive layer, a lower transparent conductive layer and a polymer dispersed liquid crystal (PDLC) layer. The upper transparent resin substrate has an upper curing layer on a side surface thereof. The lower transparent resin substrate has a lower curing layer on a side surface thereof. The upper transparent conductive layer is provided on a side surface of the upper curing layer. The lower transparent conductive layer is provided on a side surface of the lower curing layer. The PDLC layer is provided between the upper transparent conductive layer and the lower transparent conductive layer. The 3D PDLC composite layer structure is formed to have a recess portion.
Abstract:
There is provided a method for producing a birefringent lens for a stereoscopic image display using a birefringent material having two or more liquid crystal compounds each having at least one polymerizable functional group. The method includes the steps of providing the birefringent lens material; applying the birefringent lens material onto an alignment layer that has been subjected to an alignment treatment in a uniaxial direction, and forming the coating film into a lens shape by conducting curing with ultraviolet light.
Abstract:
Certain example embodiments relate to a vehicle window (e.g., sunroof). Side-firing LEDs are provided between first and second substantially parallel substrates and emit light towards central regions of the window. A liquid-crystal inclusive switchable film is provided between the first and second substrates. The liquid crystals are sized such that light received from the LEDs is redirected in a direction substantially normal to major surfaces of the first and second substrates. The switchable film is operable in at least first and second modes, with the window in the first mode having a visible transmission of less than 1%, and with the window in the second mode having a visible transmission of 7-15%. The switchable film and the LEDs are operable independently of one another in connection with the LEDs emitting light and the switchable film controlling visible transmission therethrough.
Abstract:
An optically anisotropic layer is formed by a liquid crystal compound represented by General Formula 1, in which the long axes of the molecules are oriented. wherein L1 and L2 independently represent a linking group having a carbonyl group; F1 and F2 independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom; n and m independently represent an integer from 0 to 4; a and b independently represent an integer from 1 to 4; T1 and T2 independently represent a spacer portion including a straight chain or branched alkylene or alkylene oxide group having 2 to 20 carbon atoms; and Ar represents a divalent group having at least one aromatic ring selected from a group consisting of aromatic hydrocarbon rings and aromatic heterocycles, the number of Π electrons in the Ar group being 8 or greater.