摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
A combination of deposition and polishing steps are used to permit improved uniformity of a film after the combination of steps. Both the deposition and polishing are performed with processes that vary across the substrate. The combination of the varying deposition and etching rates results in a film that is substantially planar after the film has been polished. In some instances, it may be easier to control the variation of one of the two processes than the other so that the more controllable process is tailored to accommodate nonuniformities introduced by the less controllable process.
摘要:
A method of depositing a film on a substrate disposed in a substrate processing chamber. The method includes depositing a first portion of the film by forming a high density plasma from a first gaseous mixture flown into the process chamber. The deposition processes is then stopped and part of the deposited first portion of the film is etched by flowing a halogen etchant into the processing chamber. Next, the surface of the etched film is passivated by flowing a passivation gas into the processing chamber, and then a second portion of the film is deposited over the first portion by forming a high density plasma from a second gaseous mixture flown into the process chamber. In one embodiment the passivation gas consists of an oxygen source with our without an inert gas.
摘要:
Gap-fill and damascene methods are disclosed for depositing an insulating thin film of nitrofluorinated silicate glass on a substrate in a process chamber. A high-density plasma, generated from a gaseous mixture of silicon-, fluorine-, oxygen-, and nitrogen-containing gases, deposits a layer of nitrofluorinated silicate glass onto the substrate. For gap-fill applications, the substrate is biased with a bias power density between 4.8 and 11.2 W/cm2 and the ratio of flow rate for the oxygen-containing gas to the combined flow rate for all silicon-containing gases in the process chamber is between 1.0 and 1.8, preferably between 1.2 and 1.4. For damascene applications, the bias power density is less than 3.2 W/cm2, preferably 1.6 W/cm2, and the flow rate ratio is between 1.2 and 3.0. Using optimized parameters, the thin film has a lower dielectric constant and better adhesion properties than fluorosilicate glass.
摘要:
Embodiments of the present invention generally relate to the fabrication of solar cells and more specifically to a buffer layer for improving the performance and stability of surface passivation of Si solar cells. Generally, a passivation layer stack containing a buffer layer (interlayer) is formed on a surface of the silicon-based substrate. In one embodiment, the passivation layer stack may be formed on the back surface of the substrate. In another embodiment, the passivation layer stack is formed on the back surface of the substrate and a front emitter region (light receiving surface) of the substrate.
摘要:
This invention involves a fiberglass composition containing the following components: SiO2, Al2O3, CaO, MgO, B2O3, F2, TiO2, K2O, Na2O, Fe2O3 and SO3. The weight percentage of each of the components are as follows: SiO2 58˜65%, CaO 20˜26%, Al2O3 9˜17%, MgO 0.5˜1%, B2O3 0˜5%, F2 0˜1%, TiO2 0.1˜1%, K2O+Na2O 0˜0.8%, Fe2O3 0.1˜0.5%, SO3 0˜0.6%. The ternary system, SiO2—Al2O3—CaO, is basis of the fiberglass composition in this invention, which also has low quantities of MgO and B2O3. In addition, the total amount of alkaline earth oxide and the proportional relationship between MgO and CaO are rationally designed, which helps to improve the mechanical strength, heat resistance, and chemical stability of the glass. It also has excellent manufacturing performance. Moreover, the raw materials of the fiberglass composition in this invention are low in cost, and the invention meets environmental protection requirements.