摘要:
We disclose method for materials deposition on a surface inside an energetic-beam instrument, where the energetic beam instrument is provided with a laser beam, an electron beam, and a source of precursor gas. The electron beam is focused on the surface, and the laser beam is focused to a focal point that is at a distance above the surface of about 5 microns to one mm, preferably from 5 to 50 microns. The focal point of the laser beam will thus be within the stream of precursor gas injected at the sample surface, so that the laser beam will facilitate reactions in this gas cloud with less heating of the surface. A second laser may be used for cleaning the surface.
摘要:
We disclose a method of electron-beam induced of etching the surface of a specimen in a charged-particle beam instrument, where the charged-particle beam instrument has first and second laser beams, an electron beam, and a gas-injection system for applying etchant gas to the surface. Etching is accomplished by applying a photolytic pulse from the first laser to the surface; applying a pyrolytic pulse from the second laser to the surface; and, applying an etchant gas to the surface at least during the pyrolytic pulse. Two or more alternating pyrolytic laser pulses and photolytic laser pulses may be applied to the surface. The stage supporting the specimen may be tilted relative to the axis of the electron beam before applying the electron beam to the surface of the specimen. The electron beam is applied to the surface of the specimen during the time the etchant gas is present at the surface.
摘要:
A single-channel optical processing system for an energetic-beam instrument has separate sources for processing radiation and illumination radiation. The processing radiation and the illumination radiation are combined in a single optical path and directed to a sample surface inside the energetic-beam instrument through a self-focusing rod lens. The self-focusing rod lens thus has a working distance from the sample surface that will not interfere with typical arrangements of ion beams and electron beams in such instruments. A combination of polarizers and beam splitters allows separation of the combined incident radiation and the combined radiation reflected from the sample surface and returned through the same optical channel, so that the reflected radiation may be directed to an optical detector, such as a camera or spectrometer. In other embodiments, additional illumination of the sample surface is provided at an angle to the central axis of the self-focusing rod lens.
摘要:
A single-channel optical processing system for an energetic-beam instrument has separate sources for processing radiation and illumination radiation. The processing radiation and the illumination radiation are combined in a single optical path and directed to a sample surface inside the energetic-beam instrument through a self-focusing rod lens. The self-focusing rod lens thus has a working distance from the sample surface that will not interfere with typical arrangements of ion beams and electron beams in such instruments. A combination of polarizers and beam splitters allows separation of the combined incident radiation and the combined radiation reflected from the sample surface and returned through the same optical channel, so that the reflected radiation may be directed to an optical detector, such as a camera or spectrometer. In other embodiments, additional illumination of the sample surface is provided at an angle to the central axis of the self-focusing rod lens.
摘要:
An apparatus for testing flip-chip packages has a programmed computer, a test-engine stage for applying an impact to at least one package under test, and a monitoring stage. The test-engine stage causes an impact on the package on the side opposite its ball-grid array. The test-engine stage has actuators connected to the test-engine stage and the computer, for moving and aligning the test-engine stage. The monitoring stage has a digital camera connected to the computer for transmitting digital images from the ball-grid array side of the package to the computer. A microscope is preferably connected to the digital camera. A sample stage located between the test-engine stage and the monitoring stage holds the package under test. The sample stage has an acoustic transducer capable of being removably connected to the package under test. The acoustic transducer is connected to the computer for transmitting signals from the acoustic transducer to the computer.
摘要:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
摘要:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
摘要:
An apparatus for performing automated in-situ lift-out of a sample from a specimen includes a computer having a memory with computer-readable instructions, a stage for a specimen and a nano-manipulator. The stage and the nano-manipulator are controlled by motion controllers connected to the computer. The nano-manipulator has a probe tip for attachment to samples excised from the specimen. The computer-readable instructions include instructions to cause the stage motion controllers and the nano-manipulator motion controllers, as well as an ion-beam source, to automatically perform in-situ lift-out of a sample from the specimen.
摘要:
Methods for testing flip-chip packages includes aligning a microscope and a test engine. The package under test is placed between the microscope and the test engine, and an acoustic transducer is attached to the package under test. The test engine delivers an impact to the package under test on the side of the package opposite its ball-grid array. Acoustic information and image information from the package under test is recorded. In alternate embodiments, a sequence of packages may be automatically tested.
摘要:
Methods for testing flip-chip packages includes aligning a microscope and a test engine. The package under test is placed between the microscope and the test engine, and an acoustic transducer is attached to the package under test. The test engine delivers an impact to the package under test on the side of the package opposite its ball-grid array. Acoustic information and image information from the package under test is recorded. In alternate embodiments, a sequence of packages may be automatically tested.