Abstract:
A semiconductor package assembly includes a first semiconductor package. The first semiconductor package has a semiconductor die having pads thereon, first vias disposed on the first semiconductor die, the first vias coupled to the pads. A second semiconductor package is stacked on the first semiconductor package and includes a body having a die-attach surface and a bump-attach surface opposite to the die-attach surface, a first memory die mounted on the bump-attach surface, coupled to the body, and a second memory die mounted on the die-attach surface, coupled to the body through the bonding wires. The number of input/output (I/O) pins of first memory die is different from the number of input/output (I/O) pins of the second memory die.
Abstract:
A semiconductor package assembly having a first semiconductor package, with a first redistribution layer (RDL) structure, a first semiconductor die having through silicon via (TSV) interconnects formed passing therethrough coupled to the first RDL structure, and a second semiconductor package stacked on the first semiconductor package with a second redistribution layer (RDL) structure. The assembly further includes a second semiconductor die without through silicon via (TSV) interconnects formed passing therethrough, coupled to the second RDL structure, and a third semiconductor package stacked on the second semiconductor package, having a third redistribution layer (RDL) structure, a third semiconductor die without through silicon via (TSV) interconnects formed passing therethrough coupled to the third RDL structure. the third semiconductor package is coupled to the second RDL structure by second vias passing through a second molding compound between the third semiconductor package and the second RDL structure.
Abstract:
A semiconductor package structure having a substrate, wherein the substrate has a front side and a back side, a through silicon via (TSV) interconnect structure formed in the substrate, and a first guard ring doped region and a second guard ring doped region formed in the substrate. The second guard ring doped region is disposed between the first guard ring doped region and the TSV interconnect structure.
Abstract:
The invention provides a semiconductor package with a through silicon via (TSV) interconnect. An exemplary embodiment of the semiconductor package with a TSV interconnect includes a semiconductor substrate, having a front side and a back side. A contact array is disposed on the front side of the semiconductor substrate. An isolation structure is disposed in the semiconductor substrate, underlying the contact array. The TSV interconnect is formed through the semiconductor substrate, overlapping with the contact array and the isolation structure.
Abstract:
The invention provides a semiconductor device. The semiconductor device includes a gate structure over fin structures arranged in parallel. Each of the fin structures has a drain portion and a source portion on opposite sides of the gate structure. A drain contact structure is positioned over the drain portions of the fin structures. A source contact structure is positioned over the source portions of the fin structures. A first amount of drain via structures is electrically connected to the drain contact structure. A second amount of source via structures is electrically connected to the source contact structure. The sum of the first amount and the second amount is greater than or equal to 2, and the sum of the first amount and the second amount is less than or equal to two times the amount of fin structures.
Abstract:
The invention provides a semiconductor package assembly with a TSV interconnect. The semiconductor package assembly includes a first semiconductor package mounted on a base, having: a semiconductor die, a semiconductor substrate, and a first array of TSV interconnects and a second array of TSV interconnects formed through the semiconductor substrate, wherein the first array and second array of TSV interconnects are separated by an interval region. The assembly further includes a second semiconductor die mounted on the first semiconductor package, having a ground pad thereon. One of the TSV interconnects of the first semiconductor package has a first terminal coupled to the ground pad of the second semiconductor die and a second terminal coupled to an interconnection structure disposed on a front side of the semiconductor substrate.
Abstract:
A method for forming a semiconductor package structure is provided. The method for forming a semiconductor package structure includes providing a substrate, wherein the substrate has a front side and a back side, forming a first guard ring doped region and a second guard ring doped region in the substrate, wherein the first guard ring doped region and the second guard ring doped region have different conductive types, forming a trench through the substrate from a back side of the substrate, conformally forming an insulating layer lining the back side of the substrate, a bottom surface and sidewalls of the trench, removing a portion of the insulating layer on the back side of the substrate to form a through via, and forming a conductive material in the through via, wherein a through silicon via (TSV) interconnect structure is formed by the insulating layer and the conductive material.
Abstract:
The invention provides a semiconductor package assembly. The semiconductor package assembly includes a first semiconductor package. The first semiconductor package includes a first semiconductor die having first pads thereon. First vias are disposed on the first semiconductor die, coupled to the first pads. A first dynamic random access memory (DRAM) die is mounted on the first semiconductor die, coupled to the first vias. A second semiconductor package is stacked on the first semiconductor package. The second semiconductor package includes a body having a die-attach surface and a bump-attach surface opposite to the die-attach surface. A second dynamic random access memory (DRAM) die is mounted on the die-attach surface, coupled to the body through the bonding wires. The number of input/output (I/O) pins of first DRAM die is different from the number of input/output (I/O) pins of the second DRAM die.
Abstract:
The invention provides a radio-frequency (RF) device package and a method for fabricating the same. An exemplary embodiment of a radio-frequency (RF) device package includes a base, wherein a radio-frequency (RF) device chip is mounted on the base. The RF device chip includes a semiconductor substrate having a front side and a back side. A radio-frequency (RF) component is disposed on the front side of the semiconductor substrate. An interconnect structure is disposed on the RF component, wherein the interconnect structure is electrically connected to the RF component, and a thickness of the semiconductor substrate is less than that of the interconnect structure. A through hole is formed through the semiconductor substrate from the back side of the semiconductor substrate, and is connected to the interconnect structure. A TSV structure is disposed in the through hole.
Abstract:
A semiconductor device and method for forming same. According to an embodiment. The method provides a base substrate, forms a heat dissipation substrate on the base substrate, wherein a thermal conductivity of the heat dissipation substrate is between 200 Wm−1K−1and 1200 Wm−1K−1. This method further forms a device layer on the heat dissipation substrate, wherein the device layer comprises a transistor. The method further removes the base substrate.