Abstract:
A semiconductor device structure that comprises tiers of alternating dielectric levels and conductive levels and a carbon-doped silicon nitride over the tiers of the staircase structure. The carbon-doped silicon nitride excludes silicon carbon nitride. A method of forming the semiconductor device structure comprises forming stairs in a staircase structure comprising alternating dielectric levels and conductive levels. A carbon-doped silicon nitride is formed over the stairs, an oxide material is formed over the carbon-doped silicon nitride, and openings are formed in the oxide material. The openings extend to the carbon-doped silicon nitride. The carbon-doped silicon nitride is removed to extend the openings into the conductive levels of the staircase structure. Additional methods are disclosed.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
Abstract:
A semiconductor device structure that comprises tiers of alternating dielectric levels and conductive levels and a carbon-doped silicon nitride over the tiers of the staircase structure. The carbon-doped silicon nitride excludes silicon carbon nitride. A method of forming the semiconductor device structure comprises forming stairs in a staircase structure comprising alternating dielectric levels and conductive levels. A carbon-doped silicon nitride is formed over the stairs, an oxide material is formed over the carbon-doped silicon nitride, and openings are formed in the oxide material. The openings extend to the carbon-doped silicon nitride. The carbon-doped silicon nitride is removed to extend the openings into the conductive levels of the staircase structure. Additional methods are disclosed.
Abstract:
A method comprises forming material to be etched over a substrate. An etch mask comprising a silicon nitride-comprising region is formed elevationally over the material. The etch mask comprises an elevationally-extending mask opening in the silicon nitride-comprising region that has a minimum horizontal open dimension that is greater in an elevationally-innermost portion of the region than in an elevationally-outermost portion of the region. The elevationally-outermost portion has a greater etch rate in at least one of HF and H3PO4 than does the elevationally-innermost portion. The etch mask is used as a mask while etching an elevationally-extending mask opening into the material. The silicon nitride-comprising region is exposed to at least one of HF and H3PO4 to increase the minimum horizontal open dimension in the elevationally-outermost portion to a greater degree than increase, if any, in the minimum horizontal open dimension in the elevationally-innermost portion. Other aspects and embodiments, including structure independent of method of manufacture, are disclosed.
Abstract:
Some embodiments include methods in which a mathematical representation of a photomask construction is defined, with such representation comprising a plurality of pillars that individually contain a plurality of distinct layers. Each of the layers has two or more characteristic parameters which are optimized through an optimization loop. Subsequently, specifications obtained from the optimization loop are utilized to form actual layers over an actual reticle base. Some embodiments include photomask constructions in which a radiation-patterning topography is across a reticle base, with such topography including multiple pillars that individually contain at least seven distinct layers.
Abstract:
A semiconductor device structure that comprises tiers of alternating dielectric levels and conductive levels and a carbon-doped silicon nitride over the tiers of the staircase structure. The carbon-doped silicon nitride excludes silicon carbon nitride. A method of forming the semiconductor device structure comprises forming stairs in a staircase structure comprising alternating dielectric levels and conductive levels. A carbon-doped silicon nitride is formed over the stairs, an oxide material is formed over the carbon-doped silicon nitride, and openings are formed in the oxide material. The openings extend to the carbon-doped silicon nitride. The carbon-doped silicon nitride is removed to extend the openings into the conductive levels of the staircase structure. Additional methods are disclosed.
Abstract:
A method comprises forming material to be etched over a substrate. An etch mask comprising a silicon nitride-comprising region is formed elevationally over the material. The etch mask comprises an elevationally-extending mask opening in the silicon nitride-comprising region that has a minimum horizontal open dimension that is greater in an elevationally-innermost portion of the region than in an elevationally-outermost portion of the region. The elevationally-outermost portion has a greater etch rate in at least one of HF and H3PO4 than does the elevationally-innermost portion. The etch mask is used as a mask while etching an elevationally-extending mask opening into the material. The silicon nitride-comprising region is exposed to at least one of HF and H3PO4 to increase the minimum horizontal open dimension in the elevationally-outermost portion to a greater degree than increase, if any, in the minimum horizontal open dimension in the elevationally-innermost portion. Other aspects and embodiments, including structure independent of method of manufacture, are disclosed.
Abstract:
Photolithographic apparatus, systems, and methods that make use of sub-resolution assist devices are disclosed. In the various embodiments, an imaging mask includes an optically transmissive substrate having a sub-resolution assist device that further includes a first optical attenuation region and a spaced-apart second optical attenuation region, and an optically transmissive phase adjustment region interposed between the first optical attenuation region and the second optical attenuation region, the phase adjustment region being configured to change a phase of incident illumination radiation by altering an optical property of the substrate.
Abstract:
The present invention is generally directed to a DRAM cell design with folded digitline sense amplifier. In one illustrative embodiment, a memory array having a plurality of memory cells having an effective size of 6F2 is disclosed which has a plurality of dual bit active areas, each of the active areas having a substantially longitudinal axis, and a plurality of digitlines arranged in a folded digitline architecture, wherein the active areas are positioned such that the longitudinal axis of the active areas is oriented at an angle with respect to a centerline of the digitlines.