Abstract:
A probe head includes a probe base, a film, and a probe assembly. The probe base includes first, second, and third guiding boards. The second guiding board is fixed between the first and third guiding boards. The film is fixed to the probe base and has a hole. The probe assembly passes through the first, second, and third guiding boards and the hole, and includes a probe and an outer spring sleeve. The probe has a tip passing out through the third guiding board. The outer spring sleeve is sleeved at the exterior of the probe and has a spring area and a plurality of non-spring areas. The spring area is disposed between adjacent two of the non-spring areas. One of the non-spring areas has a bonding section mounted to the probe and retained between the third guiding board and the film.
Abstract:
A positioner and a probe head of a probe card are provided. The positioner has a main opening, a first sub-opening, a second sub-opening, a third sub-opening, a fourth sub-opening, a first positioning portion, a second positioning portion, a first elastic portion and a second elastic portion. The first sub-opening, the second sub-opening, the third sub-opening, and the fourth sub-opening are sequentially arranged at the periphery of the main opening and are communicated to the main opening. A stiffness of the first positioning portion and a stiffness of the second positioning portion are higher than a stiffness of the first elastic portion and a stiffness of the second elastic portion.
Abstract:
A probe needle includes a head, a tail and a body connected between the head and the tail and provided with a first flat section curvedly extending from the head towards the tail for providing sufficient deformation when the tail is pressed on a device under test, and a second flat section neighbored to the first flat section for supporting the probe needle in between upper and lower dies. When the probe needles are used in a probe module, the probe needles can be arranged with a pitch same as that of the conventional probe needles even though the probe needles are formed from posts having a relatively greater diameter than that of the posts for making the conventional probe needles, such that the probe needles may have enhanced current withstanding capacity and prolonged lifespan.
Abstract:
An assembling method for a vertical probe device includes steps of disposing a lower die on a jig by inserting supporting columns through jig holes of the lower die, fastening a positioning film on the supporting columns, installing probe needles and an upper die in a way that the positioning film is located between the upper and lower dies without contacting the upper die, unfastening the positioning film, and removing the jig so that the upper and lower dies, positioning film and probe needles constitute the device. A maintaining method for the device includes steps of inserting the supporting columns through the jig holes, fastening the positioning film to the jig, and removing the upper die. The probe needles and upper die are easily removed and installed and the probe needles are reliable. The vertical probe device is applicable for accommodating electronic components on the top thereof.
Abstract:
A vertical probe device includes a lower die having engaging holes and needle holes, a positioning film having limiting holes and needle holes, probe needles inserted through the needle holes, and supporters having at least an upper stopping surface and at least a lower stopping surface for moveably limiting the positioning film therebetween. Each supporter has a head, a neck passing through the limiting hole and having a length longer than the thickness of the positioning film, a body, and a tail inserted into the engaging hole, which are connected in order, and at least one of the upper and lower stopping surfaces. The supporters can prevent the positioning film from being lifted and flipped over and enables the positioning film to move so that the probe needles are reliable.
Abstract:
A wafer testing probe card includes a printed circuit board, a flexible circuit board, an elastic piece, and a probe unit. The flexible circuit board is electrically connected to the printed circuit board. The elastic piece is disposed between the printed circuit board and the flexible circuit board. The probe unit includes a probe head and a plurality of probes. The probe head is fixed on the printed circuit board and has a plurality of through holes. The probes respectively pass through the through holes and move up and down relative to the probe head.
Abstract:
A positioner and a probe head of a probe card are provided. The positioner has a main opening, a first sub-opening, a second sub-opening, a third sub-opening, a fourth sub-opening, a first positioning portion, a second positioning portion, a first elastic portion and a second elastic portion. The first sub-opening, the second sub-opening, the third sub-opening, and the fourth sub-opening are sequentially arranged at the periphery of the main opening and are communicated to the main opening. A stiffness of the first positioning portion and a stiffness of the second positioning portion are higher than a stiffness of the first elastic portion and a stiffness of the second elastic portion.
Abstract:
A probe device includes a spring probe having a spring sleeve with at least a spring section and a connection segment fixed to a needle and having a convex portion protruding over an outer cylinder surface of the spring section, and a probe seat having stacked dies and at least a guiding hole through which the probe is inserted. The dies includes a lower die, a supporting die above the lower die and a non-circular supporting hole at the supporting die. The distance between a supporting surface and a center of the supporting hole is greater than the radius of the outer cylinder surface and smaller than the distance between a guiding surface of the supporting hole and the center, which is greater than the maximum distance between the convex portion and a needle center, thereby preventing the probe receiving external force from exceeding deflection and bending.
Abstract:
A spring probe includes a needle, a spring sleeve sleeved onto the needle, and a protrusion. The spring sleeve has upper and lower non-spring sections, and at least a spring section therebetween. The needle has a bottom end portion protruding out from the lower non-spring section, and a top end portion located in the upper non-spring section. The protrusion is located at one of the top end portion and the upper non-spring section. The needle is movable relative to the upper non-spring section from an initial position to a connected position where the upper non-spring section is electrically connected with the needle through the protrusion when receiving an external force. As a result, the spring probe effectively prevents signals from being transmitted through the spring section, thereby improving stability of signal transmission and preventing the spring section from fracture.