Abstract:
A memory system for maintaining data consistency and an operation method thereof are provided. The operation method includes: receiving a first data in a first cache of a first memory from a processor; reading the first data from the first cache and writing the first data as a redo log into a log buffer of the first memory; writing the redo log from the log buffer into a memory controller of the processor; performing an in-memory copy in a second memory to copy a second data as an undo log, wherein the second data is an old version of the first data; and writing the redo log from the memory controller into the second memory for covering the second data by the redo log as a third data, wherein the redo log, the third data and the first data are the same.
Abstract:
A control method for a memory device is provided. The control method includes the following steps. Convert multiple input bits on multiple bit-channels into a code word through a polar code transformation. Select a boundary bit-channel among the bit-channels according to a first ranking list for the bit-channels. Identify a target memory cell among the memory cells according to the boundary bit-channel and a generator matrix of the polar code transformation. Decrease a raw bit error rate of the target memory cell.
Abstract:
A method for writing data into a persistent storage device includes grouping a plurality of data entries stored in a temporary storage device to form a data unit, such that the data unit has a size equal to an integer multiple of a size of an access unit of the persistent storage device. The method further includes writing the data unit into the persistent storage device.
Abstract:
A memory system is provided. The memory system includes a memory controller and a first memory block. The first memory block is configured to store a first data from a top of the first memory block in a top-down fashion. The first memory block is configured to store a first metadata corresponding to the first data from a bottom of the first memory block in a bottom-up fashion. The first data forms a first data area. The first metadata forms a first metadata area. And a first continuous space is formed between a bottom of the first data area and a top of the first metadata area.
Abstract:
A multiple-bit-per-cell, page mode memory comprises a plurality of physical pages, each physical page having N addressable pages p(n). Logic implements a plurality of selectable program operations to program an addressed page. Logic select one of the plurality of selectable program operations to program an addressed page in the particular physical page using a signal that indicates a logical status of another addressable page in the particular physical page. The logical status can indicate whether the other addressable page contains invalid data. The first program operation overwrites the other addressable page, and the second program operation preserves the other addressable page. The first program operation can execute more quickly than the second program operation. The logic can also be applied for programming multiple-bit-per-cell memory not configured in a page mode.
Abstract:
A memory circuit is described that includes an array of memory cells including a plurality of blocks. The circuit includes a controller including logic to execute program sequences for selected blocks in the plurality of blocks. The program sequences include patterns of program/verify cycles. The circuit includes logic to assign different patterns of program/verify cycles to different blocks in the plurality of blocks. The circuit includes logic to change a particular pattern assigned to a particular block in the plurality of blocks. The circuit includes logic to maintain statistics for blocks in the plurality of blocks, about performance of cells in the blocks in response to the patterns of program/verify cycles assigned to the blocks. The controller includes logic to apply a stress sequence to one of the selected blocks, the stress sequence including stress pulses applied to memory cells in the one of the selected blocks.
Abstract:
A data processing system comprises a storage device, an interface module and a scheduler. The interface module is configured to dispatch a non-prioritized request via a first data path, and to transfer application-level information of an application via a second data path. The scheduler, coupled to the first and second data path, is configured to enable an access to the storage device according to the non-prioritized request and the application-level information respectively received from the first and second data paths.
Abstract:
Technology is described that supports reduced program disturb of nonvolatile memory. A three/two dimensional NAND array includes a plurality of pages, which are divided into a plurality of page groups. Access is allowed to memory cells within a first page group of a plurality of page groups in an erase block of the three dimensional NAND array, while access is minimized to memory cells within a second page group of the plurality of page groups in the erase block of the three/two dimensional NAND array. Pages in the same page group are physically nonadjacent with each other in the three/two dimensional NAND array.
Abstract:
Disclosed is a management system for managing a memory device having sub-chips each having a container area and a data area. A CPU selects a target sub-chip according to respective temperature of the sub-chips. When the CPU intends to access a first original data in one of the data areas, a hot date tracking device acquires a first original address of the first original data from the CPU. When the first original address is recorded in one of a plurality of tracking layers, the CPU is indicated to access a first copied data corresponding to the first original data in the container area of the target sub-chip according to a current tracking layer recording the first original address. When the first original address is not recorded in the tracking layers, the CPU accesses the first original data in the data area according to the first original address.
Abstract:
A memory controlling method, a memory controlling circuit and a memory system are provided. A memory includes a plurality of memory chips. The memory controlling method includes the following steps: The memory chips are grouped into at least two partner groups by a grouping unit. A quantity of the memory chips in each of the partner groups is at least two. At least one of the memory chips in each of the partner groups is required to serve a reading request or a writing request by a processing unit.