摘要:
A method of tuning thin film properties using pulsed laser deposition (PLD) by tuning laser parameters is provided. Various embodiments may be utilized to tune magnetic properties, conductivity or other physical properties. Some embodiments may improve performance of electrochemical devices, for example a thin film electrode may be fabricated resulting in improved reaction speed of a Li ion battery. By way of example, a material property of thin film is tuned by setting a pulse duration. In some embodiments the numbers of laser pulses and laser pulse energy are other laser parameters which may be utilized to tune the film properties. The materials that can be synthesized using various embodiments of the invention include, but are not limited to, metals and metal oxides.
摘要:
Various embodiments include a method of producing chemically pure and stably dispersed metal and metal-alloy nanoparticle colloids with ultrafast pulsed laser ablation. A method comprises irradiating a metal or metal alloy target submerged in a liquid with ultrashort laser pulses at a high repetition rate, cooling a portion of the liquid that includes an irradiated region, and collecting nanoparticles produced with the laser irradiation and liquid cooling. The method may be implemented with a high repetition rate ultrafast pulsed laser source, an optical system for focusing and moving the pulsed laser beams, a metal or metal alloy target submerged in a liquid, and a liquid circulating system to cool the laser focal volume and collect the nanoparticle products. By controlling various laser parameters, and with optional liquid flow movement, the method provides stable colloids of dispersed metal and metal-alloy nanoparticles. In various embodiments additional stabilizing chemical agents are not required.
摘要:
A method for generating nanoparticles in a liquid comprises generating groups of ultrafast laser pulses, each pulse in a group having a pulse duration of from 10 femtoseconds to 200 picoseconds, and each group containing a plurality of pulses with a pulse separation of 1 to 100 nanoseconds and directing the groups of pulses at a target material in a liquid to ablate it. The multiple pulse group ablation produces nanoparticles with a reduced average size, a narrow size distribution, and improved production efficiency compared to prior pulsed ablation systems.
摘要:
A p-type semiconductor zinc oxide (ZnO) film and a process for preparing the film are disclosed. The film is co-doped with phosphorous (P) and lithium (Li). A pulsed laser deposition scheme is described for use in growing the film. Further described is a process of pulsed laser deposition using transparent substrates which includes a pulsed laser source, a substrate that is transparent at the wavelength of the pulsed laser, and a multi-target system. The optical path of the pulsed laser is arranged in such a way that the pulsed laser is incident from the back of the substrate, passes through the substrate, and then focuses on the target. By translating the substrate towards the target, this geometric arrangement enables deposition of small features utilizing the root of the ablation plume, which can exist in a one-dimensional transition stage along the target surface normal, before the angular width of the plume is broadened by three-dimensional adiabatic expansion. This can provide small deposition feature sizes, which can be similar in size to the laser focal spot, and provides a novel method for direct deposition of patterned materials.
摘要:
An apparatus for performing surface-enhanced Raman scattering (SERS) is disclosed wherein an inner surface of a container is coated with SERS active materials such as nanoparticles of noble metals. Such a container can provide a partially enclosed, optical diffuse cavity whose inner surfaces serve for dual purposes of enhancing Raman scattering of the contained analyte and optical integration, therefore improving the efficiency of optical excitation and signal collection. The container may be configured to isolate the SERS active material from the external environment. The container, which may be a cylindrical tube, may be referred to as a SERS tube. Methods of coating the inner wall of a container with pulsed laser ablation and with nanoparticle colloids, respectively, are disclosed.
摘要:
A method of producing compound nanorods and thin films under a controlled growth mode is described. The method involves ablating compound targets using an ultrafast pulsed laser and depositing the ablated materials onto a substrate. When producing compound nanorods, external catalysts such as pre-deposited metal nanoparticles are not involved. Instead, at the beginning of deposition, simply by varying the fluence at the focal spot on the target, a self-formed seed layer can be introduced for nanorods growth. This provides a simple method of producing high purity nanorods and controlling the growth mode. Three growth modes are covered by the present invention, including nanorod growth, thin film growth, and nano-porous film growth.
摘要:
A reagent for classification of leukocytes includes (a) at least two cationic surfactants; (b) at least one organic compound bearing a hydrophobic group and an anionic group; (c) a buffer for adjusting pH into a range of approximately 2-8. Also disclosed is a method for classifying leukocytes with the reagent. With the reagent and method, erythrocytes are lysed rapidly and classification of leukocytes into five groups is achieved in the same channel. The reaction may be carried out at approximately between 10-40° C. and scattered light signals may be detected at two angles for measuring the classification of leukocytes into five groups.
摘要:
A method of producing nanoparticles of solar light absorbing compound materials based on pulsed laser ablation is disclosed. The method uses irradiation of a target material of solar light absorbing compound material with a pulsed laser beam having a pulse duration of from 10 femtoseconds to 500 picoseconds to ablate the target thereby producing nanoparticles of the target. The nanoparticles are collected and a solution of the nanoparticles is applied to a substrate to produce a thin film solar cell. The method preserves the composition and structural crystalline phase of the starting target. The method is a much lower cost fabrication method for thin film solar cells.
摘要:
An outer shell of a mobile phone, the outer shell comprises a substrate, a semi-transparent coating formed on the substrate, and an opaque layer partially formed on the opposite side from the semi-transparent coating, wherein the substrate includes at least two sub-areas, a first sub-area overlaps a second sub-area to form a first overlapping area showing a mixture of colors between a first color and a second color.
摘要:
A method of producing compound nanorods and thin films under a controlled growth mode is described. The method involves ablating compound targets using an ultrafast pulsed laser and depositing the ablated materials onto a substrate. When producing compound nanorods, external catalysts such as pre-deposited metal nanoparticles are not involved. Instead, at the beginning of deposition, simply by varying the fluence at the focal spot on the target, a self-formed seed layer can be introduced for nanorods growth. This provides a simple method of producing high purity nanorods and controlling the growth mode. Three growth modes are covered by the present invention, including nanorod growth, thin film growth, and nano-porous film growth.