Package-integrated thin film LED
    7.
    发明授权
    Package-integrated thin film LED 有权
    封装集成薄膜LED

    公开(公告)号:US07488621B2

    公开(公告)日:2009-02-10

    申请号:US11421350

    申请日:2006-05-31

    IPC分类号: H01L21/00

    摘要: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features. There is very little absorption of light by the thinned epitaxial layer, there is high thermal conductivity to the package because the LED layers are directly bonded to the package substrate without any support substrate therebetween, and there is little electrical resistance between the package and the LED layers so efficiency (light output vs. power input) is high. The light extraction features of the LED layer further improves efficiency.

    摘要翻译: 在衬底上生长LED外延层(n型,p型和有源层)。 对于每个管芯,n和p层电连接到延伸超过LED管芯边界的封装衬底,使得LED层位于封装衬底和生长衬底之间。 封装衬底提供电触头和导体,导致可焊接的封装连接。 然后除去生长底物。 因为精细的LED层在附着于生长衬底的同时与封装衬底结合,所以不需要用于LED层的中间支撑衬底。 然后将与去除的生长衬底相邻的较厚的LED外延层变薄,并将其顶表面加工成掺入光提取特征。 通过减薄的外延层对光的吸收非常小,因为LED层直接接合到封装基板上而没有任何支撑基板,因此封装和LED之间的电阻很小,因此封装的导热性很高 层效率(光输出与功率输入)高。 LED层的光提取特性进一步提高了效率。

    Package-integrated thin film LED
    8.
    发明授权
    Package-integrated thin film LED 有权
    封装集成薄膜LED

    公开(公告)号:US07256483B2

    公开(公告)日:2007-08-14

    申请号:US10977294

    申请日:2004-10-28

    IPC分类号: H01L23/495

    摘要: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features. There is very little absorption of light by the thinned epitaxial layer, there is high thermal conductivity to the package because the LED layers are directly bonded to the package substrate without any support substrate therebetween, and there is little electrical resistance between the package and the LED layers so efficiency (light output vs. power input) is high. The light extraction features of the LED layer further improves efficiency.

    摘要翻译: 在衬底上生长LED外延层(n型,p型和有源层)。 对于每个管芯,n和p层电连接到延伸超过LED管芯边界的封装衬底,使得LED层位于封装衬底和生长衬底之间。 封装衬底提供电触头和导体,导致可焊接的封装连接。 然后除去生长底物。 因为精细的LED层在附着于生长衬底的同时与封装衬底结合,所以不需要用于LED层的中间支撑衬底。 然后将与去除的生长衬底相邻的较厚的LED外延层变薄,并将其顶表面加工成掺入光提取特征。 通过减薄的外延层对光的吸收非常小,因为LED层直接接合到封装基板上而没有任何支撑基板,因此封装和LED之间的电阻很小,因此封装的导热性很高 层效率(光输出与功率输入)高。 LED层的光提取特性进一步提高了效率。

    PACKAGE-INTEGRATED THIN FILM LED
    9.
    发明申请
    PACKAGE-INTEGRATED THIN FILM LED 有权
    封装集成薄膜LED

    公开(公告)号:US20110084301A1

    公开(公告)日:2011-04-14

    申请号:US12969709

    申请日:2010-12-16

    IPC分类号: H01L33/48 H01L33/36

    摘要: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features. There is very little absorption of light by the thinned epitaxial layer, there is high thermal conductivity to the package because the LED layers are directly bonded to the package substrate without any support substrate therebetween, and there is little electrical resistance between the package and the LED layers so efficiency (light output vs. power input) is high. The light extraction features of the LED layer further improves efficiency.

    摘要翻译: 在衬底上生长LED外延层(n型,p型和有源层)。 对于每个管芯,n和p层电连接到延伸超过LED管芯边界的封装衬底,使得LED层位于封装衬底和生长衬底之间。 封装衬底提供电触头和导体,导致可焊接的封装连接。 然后除去生长底物。 因为精细的LED层在附着于生长衬底的同时与封装衬底结合,所以不需要用于LED层的中间支撑衬底。 然后将与去除的生长衬底相邻的较厚的LED外延层变薄,并将其顶表面加工成掺入光提取特征。 通过减薄的外延层对光的吸收非常小,因为LED层直接接合到封装基板上而没有任何支撑基板,因此封装和LED之间的电阻很小,因此封装的导热性很高 层效率(光输出与功率输入)高。 LED层的光提取特性进一步提高了效率。

    Package-integrated thin film LED
    10.
    发明授权

    公开(公告)号:US08455913B2

    公开(公告)日:2013-06-04

    申请号:US12969709

    申请日:2010-12-16

    IPC分类号: H01L33/00

    摘要: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features. There is very little absorption of light by the thinned epitaxial layer, there is high thermal conductivity to the package because the LED layers are directly bonded to the package substrate without any support substrate therebetween, and there is little electrical resistance between the package and the LED layers so efficiency (light output vs. power input) is high. The light extraction features of the LED layer further improves efficiency.