摘要:
A device and method are provided for controlling the temperature, in particular for cooling, of an LED lamp or LED modules of an LED lamp, e.g., for curing a light-cured pipe. The device includes: a fluid supply line and multiple heat exchangers connected to the supply line; multiple LEDs coupled to each heat exchanger with respect to heat transfer; and a fluid return line. The fluid supply and return lines are connected to each other in a fluid-tight manner by various combinations of L-pieces and T-pieces in or at the ends of the fluid supply and the return lines, so that the fluid flows from the LEDs in a spatially separated way and the fluid supply and return lines have at least two parallel fluid connections to each other, the heat exchangers being arranged in the fluid connections or constituting the fluid connections.
摘要:
A device and method are provided for controlling the temperature, in particular for cooling, of an LED lamp or LED modules of an LED lamp, e.g., for curing a light-cured pipe. The device includes: a fluid supply line and multiple heat exchangers connected to the supply line; multiple LEDs coupled to each heat exchanger with respect to heat transfer; and a fluid return line. The fluid supply and return lines are connected to each other in a fluid-tight manner by various combinations of L-pieces and T-pieces in or at the ends of the fluid supply and the return lines, so that the fluid flows from the LEDs in a spatially separated way and the fluid supply and return lines have at least two parallel fluid connections to each other, the heat exchangers being arranged in the fluid connections or constituting the fluid connections.
摘要:
A method is provided for coating an optoelectronic chip-on-board module, including a flat substrate populated with one or more optoelectronic components, having a transparent, UV-resistant, and temperature-resistant coating made of one or more silicones. A corresponding optoelectronic chip-on-board module and a system having multiple optoelectronic chip-on-board modules are also provided. The method includes the following steps: a) preheating the substrate to be coated to a first temperature; b) applying on the preheated substrate a dam that encloses a surface area or partial area of the substrate to be coated, the dam being made of a first, heat-curable, highly reactive silicone that cures at the first temperature; c) filling the surface area or partial area of the substrate enclosed by the dam with a liquid second silicone; and d) curing the second silicone.
摘要:
A method is provided for coating an optoelectronic chip-on-board module, including a flat substrate populated with one or more optoelectronic components, having a transparent, UV-resistant, and temperature-resistant coating made of one or more silicones. A corresponding optoelectronic chip-on-board module and a system having multiple optoelectronic chip-on-board modules are also provided. The method includes the following steps: a) preheating the substrate to be coated to a first temperature; b) applying on the preheated substrate a dam that encloses a surface area or partial area of the substrate to be coated, the dam being made of a first, heat-curable, highly reactive silicone that cures at the first temperature; c) filling the surface area or partial area of the substrate enclosed by the dam with a liquid second silicone; and d) curing the second silicone.
摘要:
A method is proposed for coating an optoelectronic chip-on-board module including a flat substrate populated with one or more optoelectronic components having at least one primary optical arrangement and optionally at least one secondary optical arrangement. The optoelectronic chip-on-board module is coated with a transparent, UV-resistant, and temperature-resistant coating made of silicone by the following steps: (a) casting a liquid silicone into a mold open towards the top and having outer dimensions corresponding to or exceeding outer dimensions of the substrate; (b) inserting the substrate into the mold, wherein the optoelectronic component(s) are immersed completely into the silicone and a surface of the substrate contacts the silicone completely or the substrate immerses into the silicone at least partially with full surface contact; (c) curing and cross-linking the silicone with the optoelectronic component(s) and the substrate; and (d) removing the substrate from the mold with the coating of cured silicone.
摘要:
A lighting device is provided for the uniform illumination of curved, uneven, or polyhedral surfaces. The lighting device has a plurality of flat chip-on-board LED modules, which are arranged adjacent to each other at least in pairs. Each chip-on-board LED module has a plurality of light-emitting LEDs. The lighting device is characterized by at least one pair of the adjacent chip-on-board LED modules being arranged at an angle greater than 0° with respect to the surface normals of the modules.
摘要:
The invention relates to an optoelectronic module (112), more particularly to an optoelectronic chip-on-board module (114). The optoelectronic module (112) comprises a substrate (116), wherein the substrate (116) has a planar design. Furthermore, the optoelectronic module (112) comprises a plurality of optoelectronic components (118) that are arranged on the substrate (116). Furthermore, the optoelectronic module (112) comprises a lens system (122) having a plurality of lenses (124). The lens system (122) comprises at least two lenses (124) with different directivities.
摘要:
The invention relates to an optoelectronic module, more particularly to an optoelectronic chip-on-board module. The optoelectronic module comprises a substrate, wherein the substrate has a planar design. Furthermore, the optoelectronic module comprises a plurality of optoelectronic components that are arranged on the substrate. Furthermore, the optoelectronic module comprises a lens system having a plurality of lenses. The lens system comprises at least two lenses with different directivities.
摘要:
A method is proposed for coating an optoelectronic chip-on-board module including a flat substrate populated with one or more optoelectronic components having at least one primary optical arrangement and optionally at least one secondary optical arrangement. The optoelectronic chip-on-board module is coated with a transparent, UV-resistant, and temperature-resistant coating made of silicone by the following steps: (a) casting a liquid silicone into a mold open towards the top and having outer dimensions corresponding to or exceeding outer dimensions of the substrate; (b) inserting the substrate into the mold, wherein the optoelectronic component(s) are immersed completely into the silicone and a surface of the substrate contacts the silicone completely or the substrate immerses into the silicone at least partially with full surface contact; (c) curing and cross-linking the silicone with the optoelectronic component(s) and the substrate; and (d) removing the substrate from the mold with the coating of cured silicone.
摘要:
A lighting device (40-40″, 45-45″, 50-50″, 60, 80, 93-93″) is provided for the uniform illumination of curved, uneven, or polyhedral surfaces. The lighting device has a plurality of flat chip-on-board LED modules (1, 11, 11′, 21, 31, 41-41″, 46-46″, 51-51″, 61-61″, 71-71′″, 811-818), which are arranged adjacent to each other at least in pairs. Each chip-on-board LED module (1, 11, 11′, 21, 31, 41-41″, 46-46″, 51-51″, 61-61″, 71-811-818) has a plurality of light-emitting LEDs (4, 4′, 14, 14′, 24, 34, 64, 72). The lighting device (40-40″, 45-45″, 50-50″, 60, 80, 93-93″) is characterized by at least one pair of the adjacent chip-on-board LED modules (1, 11, 11′, 21, 31, 41-41″, 46-46″, 51-51″, 61-61″, 71-71′″, 811-818) being arranged at an angle greater than 0° with respect to the surface normals of the modules.