Abstract:
The invention relates to compounds of general formula (I): wherein: each of R1 and R9 is independently selected from: —H, C1-4alkyl, C2-4alkenyl, and halogenated C1-4alkyl; each of R3NA and R3NB is independently selected from: —H, C1-4alkyl, C2-4alkenyl, and halogenated C1-4alkyl; each of R7NA and R7NB is independently selected from: —H, C1-4alkyl, C2-4alkenyl, and halogenated C1-4alkyl; and wherein: each of RA and RB is independently selected from: C1-4alkyl, halogenated C1-4alkyl, and C6-10aryl; or RA and RB are linked to form a group selected from: C1-6 alkylene and C6-10 arylene; and pharmaceutically acceptable salts thereof, which are useful in the treatment of, for example, Alzheimer's disease. In other aspects the invention also relates to novel formulations of 3,7-diamino-10H-phenothiazinium salts.
Abstract:
Systems and methods for optimizing the performance of a vehicle under normal operating conditions. A vehicle system adjusts one or more vehicle operating parameters in a closed-loop in response to data received from sensors. A portable vehicle communication interface module is selectively attached to the vehicle without inhibiting normal operation of the vehicle. When connected to the vehicle, the vehicle communication interface module records the adjustments made by the vehicle system in closed-loop operation. These recorded values are then used to update calibration information that the vehicle system uses as default values.
Abstract:
The invention relates to compounds of general formula (I): wherein: each of R1 and R9 is independently selected from: —H, C1-4alkyl, C2-4alkenyl, and halogenated C1-4alkyl; each of R3NA and R3NB is independently selected from: —H, C1-4alkyl, C2-4alkenyl, and halogenated C1-4alkyl; each of R7NA and R7NB is independently selected from: —H, C1-4alkyl, C2-4alkenyl, and halogenated C1-4alkyl; and wherein: each of RA and RB is independently selected from: C1-4alkyl, halogenated C1-4alkyl, and C6-10aryl; or RA and RB are linked to form a group selected from: C1-6 alkylene and C6-10 arylene; and pharmaceutically acceptable salts thereof, which are useful in the treatment of, for example, Alzheimer's disease. In other aspects the invention also relates to novel formulations of 3,7-diamino-10H-phenothiazinium salts.
Abstract:
An integrated microluminometer includes an integrated circuit chip having at least one n-well/p-substrate junction photodetector for converting light received into a photocurrent, and a detector on the chip for processing the photocurrent. A distributed electrode configuration including a plurality of spaced apart electrodes disposed on an active region of the photodetector is preferably used to raise efficiency.
Abstract:
The present invention provides an intraocular lens (IOL) having an optic with a posterior and an anterior refractive surfaces, at least one of which has an aspherical profile, typically characterized by a non-zero conic constant, for controlling the aberrations of a patient's eye in which the IOL is implanted. Preferably, the IOL's asphericity, together with the aberrations of the patient's eye, cooperate to provide an image contrast characterized by a calculated modulation transfer function (MTF) of at least about 0.25 and a depth of field of at least about 0.75 Diopters.
Abstract:
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
Abstract:
Systems and methods are described for controlled alignment of catalyticaly grown nanostructures in a large-scale synthesis process. An apparatus includes an electrode including: a protruding section defining an edge; and a nonprotruding section coupled to the protruding section, where the edge is adapted to deflect an electric field generated with the electrode and at least one section selected from the group consisting of the protruding section and the nonprotruding section is adapted to support a substrate for the growth of elongated nanostructures.
Abstract:
A smoking article filter (20) comprises a recess (25) to receive a filter insert unit (30). The filter insert unit (30) is secured to the filter (20) once inserted. The filter (20) and the filter insert unit (30) may comprise additives such as flavourants, colourants or sorbents.
Abstract:
In one aspect, the present invention provides a method of designing a diffractive ophthalmic lens (e.g., an intraocular lens (IOL)) that includes providing an optic having an anterior refractive surface and a posterior refractive surface, wherein the optic provides a far-focus power (e.g., in a range of about 18 to about 26 Diopters (D)). A truncated diffractive structure can be disposed on at least one of the surfaces for generating a near-focus add power (e.g., in a range of about 3 D to about 4 D). And the diffractive structure can be adjusted so as to obtain a desired distribution of optical energy between the near and far foci for a range of pupil sizes.
Abstract:
In one aspect, the present invention provide an ophthalmic lens (e.g., an IOL) that includes an optic having an anterior optical surface and a posterior optical surface, where the optic provides an optical power in a range of about 16 D to about 25 D as measured in a medium having an index of refraction substantially similar to that of the eye's aqueous humor (e.g., about 1.336). At least one of the optical surfaces is characterized by an aspherical base profile such that the optic exhibits a negative spherical aberration in a range of about −0.202 microns to about −0.190 microns across the power range.