Abstract:
Methods of operating integrated circuit devices include generating a voltage level at a particular node in response to a first voltage level applied to a termination device and a second voltage level applied to a reference resistance; determining whether a plurality of available resistance values of the termination device satisfy a criterion that each available resistance value is either less than a resistance value of the reference resistance, or each available resistance value is greater than the resistance value of the reference resistance; and, when the plurality of available resistance values of the termination device satisfy the criterion, determining whether a voltage level generated at the particular node for a particular available resistance value of the plurality of available resistance values is between a voltage level of a first reference voltage and a voltage level of a second reference voltage.
Abstract:
Apparatus facilitating peak power management are useful in mitigating excessive current levels within a multi-die package. For example, such apparatus may include an array of memory cells, a controller for performing an access operation on the array of memory cells, an input buffer having an input connected to a clock signal line and having an output, a clock generator for generating an internal clock signal, an output buffer having an input connected to receive the internal clock signal and having an output connected to the clock signal line, and a counter for counting pulses of a particular clock signal selected from a group consisting of the internal clock signal from the clock generator and an external clock signal from the output of the input buffer.
Abstract:
Dynamic data caches (DDCs), decoders and decoding methods that may fit into a smaller width area. The DDCs, decoders and decoding method may be used in flash memory devices. A single column select line may be provided to select a plurality of cached bytes, while a second select line selects a byte of the selected plurality. The column select line may be routed parallel to bit lines carrying data, while the second select line may be routed perpendicular to the bit lines.
Abstract:
Semiconductor devices, such as three-dimensional memory devices, include a memory array including a stack of conductive tiers and a stair step structure. The stair step structure is positioned between first and second portions of the memory array and includes contact regions for respective conductive tiers of the stack of conductive tiers. The first portion of the memory array includes a first plurality of select gates extending in a particular direction over the stack. The second portion of the memory array includes a second plurality of select gates also extending in the particular direction over the stack of conductive tiers. Methods of forming and methods of operating such semiconductor devices, including vertical memory devices, are also disclosed.
Abstract:
Examples described include dynamic data caches (DDCs), decoders and decoding methods that may fit into a smaller width area. The DDCs, decoders and decoding method may be used in flash memory devices. A single column select line may be provided to select a plurality of cached bytes, while a second select line selects a byte of the selected plurality. The column select line may be routed parallel to bit lines carrying data, while the second select line may be routed perpendicular to the bit lines.
Abstract:
Semiconductor devices, such as three-dimensional memory devices, include a memory array including a stack of conductive tiers and a stair step structure. The stair step structure is positioned between first and second portions of the memory array and includes contact regions for respective conductive tiers of the stack of conductive tiers. The first portion of the memory array includes a first plurality of select gates extending in a particular direction over the stack. The second portion of the memory array includes a second plurality of select gates also extending in the particular direction over the stack of conductive tiers. Methods of forming and methods of operating such semiconductor devices, including vertical memory devices, are also disclosed.
Abstract:
Apparatuses and methods for stair step formation using at least two masks, such as in a memory device, are provided. One example method can include forming a first mask over a conductive material to define a first exposed area, and forming a second mask over a portion of the first exposed area to define a second exposed area, the second exposed area is less than the first exposed area. Conductive material is removed from the second exposed area. An initial first dimension of the second mask is less than a first dimension of the first exposed area and an initial second dimension of the second mask is at least a second dimension of the first exposed area plus a distance equal to a difference between the initial first dimension of the second mask and a final first dimension of the second mask after a stair step structure is formed.
Abstract:
Examples described include dynamic data caches (DDCs), decoders and decoding methods that may fit into a smaller width area. The DDCs, decoders and decoding method may be used in flash memory devices. A single column select line may be provided to select a plurality of cached bytes, while a second select line selects a byte of the selected plurality. The column select line may be routed parallel to bit lines carrying data, while the second select line may be routed perpendicular to the bit lines.
Abstract:
A non-volatile memory device has a memory array comprising a plurality of memory cells. The array can operate in either a multilevel cell or single level cell mode and each cell has a lower page and an upper page of data. The memory device has a data latch for storing flag data and a cache latch coupled to the data latch. A read method comprises initiating a lower page read of a memory cell and reading, from the data latch, flag data that indicates whether a lower page read operation is necessary.
Abstract:
Methods of operating integrated circuit devices are useful in testing impedance adjustment. Methods include connecting a node of the integrated circuit device to a first voltage node through a reference resistance and connecting the node to a second voltage node through a termination device, and comparing a voltage level at the node to a reference voltage for at least one resistance value of the termination device. When no available resistance value of the termination device generates a voltage level at the node that is deemed to match the reference voltage, the voltage level of the reference voltage may be altered, and the voltage level at the node may be compared to the altered reference voltage. When the voltage level at the node is deemed to match the altered reference voltage, the termination device may be deemed as passed. Otherwise, the termination device may be deemed as failed.