Abstract:
Embodiments of substrates, semiconductor devices and methods are shown that include elongated structures to improve conduction. Elongated structures and methods are also shown that provide electromagnetic isolation to reduce noise in adjacent components.
Abstract:
A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins.
Abstract:
A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins.
Abstract:
Non-cylindrical conducting shapes are described in the context of multilayer laminated substrate cores. In one example a package substrate core includes a plurality of dielectric layers pressed together to form a multilayer core, a conductive bottom pattern on a bottom surface of the multilayer core, and a conductive top pattern on a top surface of the multilayer core. At least one elongated via extends through each layer of the multilayer core, each elongated via containing a conductor and each connected to a conductor of a via in an adjacent layer to electrically connect the top pattern and the bottom pattern through the conductors of the elongated vias.
Abstract:
Non-cylindrical conducting shapes are described in the context of multilayer laminated substrate cores. In one example a package substrate core includes a plurality of dielectric layers pressed together to form a multilayer core, a conductive bottom pattern on a bottom surface of the multilayer core, and a conductive top pattern on a top surface of the multilayer core. At least one elongated via extends through each layer of the multilayer core, each elongated via containing a conductor and each connected to a conductor of a via in an adjacent layer to electrically connect the top pattern and the bottom pattern through the conductors of the elongated vias.
Abstract:
Embodiments that allow both high density and low density interconnection between microelectronic die and motherboard via Direct Chip Attach (DCA) are described. In some embodiments, microelectronic die have a high density interconnect with a small bump pitch located along one edge and a lower density connection region with a larger bump pitch located in other regions of the die. The high density interconnect regions between die are interconnected using an interconnecting bridge made out of a material that can support high density interconnect manufactured into it, such as silicon. The lower density connection regions are used to attach interconnected die directly to a board using DCA. The high density interconnect can utilize current Controlled Collapsed Chip Connection (C4) spacing when interconnecting die with an interconnecting bridge, while allowing much larger spacing on circuit boards.
Abstract:
Embodiments of systems, devices, and methods to minimize warping of ultrathin IC packaged products are generally described herein. In some embodiments, an apparatus includes an IC mounted on a package substrate, and a capacitive stiffener subassembly mounted on the package substrate. The capacitive stiffener subassembly includes a plurality of capacitive elements electrically connected to contacts of the IC.
Abstract:
A method and device includes a first conductor formed on a first dielectric layer as a partial turn of a coil. A second conductor is formed on a second dielectric layer that covers the first dielectric layer and first conductor, the second conductor forming a partial turn of the coil. A vertical interconnect couples the first and second conductors to form a first full turn of the coil. The interconnect coupling can be enhanced by embedding some selective magnetic materials into the substrate.
Abstract:
Devices and methods including a though-hole inductor for an electronic package are shown herein. Examples of the through-hole inductor include a substrate including at least one substrate layer. Each substrate layer including a dielectric layer having a first surface and a second surface. An aperture included in the dielectric layer is located from the first surface to the second surface. The aperture includes an aperture wall from the first surface to the second surface. A conductive layer is deposited on the first surface, second surface, and the aperture wall. At least one coil is cut from the conductive layer and located on the aperture wall.
Abstract:
A circuit board upon which to mount an integrated circuit chip may include a first interconnect zone on the surface of the circuit board having first contacts with a first pitch, and a second interconnect zone, surrounding the first zone, having second contacts or traces with a second pitch that is smaller than the first pitch. The first contacts may have a design rule (DR) for direct chip attachment (DCA) to an integrated circuit chip. The first contacts may be formed by bonding a sacrificial substrate having the first contacts to a surface of the board; or by laser scribing trenches where the conductor will be plated to create the first contacts. Such a board allows DCA of smaller footprint processor chips for devices, such as tablet computers, cell phones, smart phones, and value phone devices.