摘要:
A semiconductor laser, a semiconductor device and a nitride series III-V group compound substrate capable of obtaining a crystal growth layer with less fluctuation of the crystallographic axes and capable of improving the device characteristics, as well as a manufacturing method therefor are provided. The semiconductor laser comprises, on one surface of a substrate used for growing, a plurality of spaced apart seed crystal layers and an n-side contact layer having a lateral growing region which is grown on the basis of the plurality of seed crystal layers. The seed crystal layer is formed in that a product of width w1 (unit: &mgr;m) at the boundary thereof relative to the n-side contact layer along the arranging direction A and a thickness t1 (unit: &mgr;m) along the direction of laminating the n-side contact layer is 15 or less. A semiconductor layer comprising a nitride series III-V group compound semiconductor is laminated on a substrate 11 comprising an n-type GaN. Protruded seed crystal portions are formed and a growth suppression layer having an opening corresponding to the seed crystal portion is disposed to the substrate. The semiconductor layer grows on the basis of the seed crystal portion and has a lateral growing region of low dislocation density.
摘要:
A semiconductor laser, a semiconductor device and a nitride series III-V group compound substrate capable of obtaining a crystal growth layer with less fluctuation of the crystallographic axes and capable of improving the device characteristics, as well as a manufacturing method therefor are provided. The semiconductor laser comprises, on one surface of a substrate used for growing, a plurality of spaced apart seed crystal layers and an n-side contact layer having a lateral growing region which is grown on the basis of the plurality of seed crystal layers. The seed crystal layer is formed in that a product of width w1 (unit: μm) at the boundary thereof relative to the n-side contact layer along the arranging direction A and a thickness t1 (unit: μm) along the direction of laminating the n-side contact layer is 15 or less. This can decrease the fluctuation of the crystallographic axes in the n-side contact layer. Accordingly, crystallinity of the semiconductor layer including from n-type clad layer to a p-side contact layer laminated on the n-side contact layer is improved. A semiconductor laser and a semiconductor device capable of decreasing dislocation density and improving device characteristics, as well as a manufacturing method therefor are provided. A semiconductor layer comprising a nitride series III-V group compound semiconductor is laminated on a substrate 11 comprising an n-type GaN. Protruded seed crystal portions are formed and a growth suppression layer having an opening corresponding to the seed crystal portion is disposed to the substrate. The semiconductor layer grows on the basis of the seed crystal portion and has a lateral growing region of low dislocation density. When a current injection region is disposed corresponding to the lateral growing region, the light emission efficiency can be improved. Further, when the growth suppression layer is provided with a function of reflecting or absorbing light generated in the semiconductor layer, it is possible to prevent leakage of light or intrusion of stray light from the substrate to suppress generation of noises.
摘要:
To provide a semiconductor device capable of preventing the bowing of the substrate, and having a semiconductor layer of a III-V group compound of a nitride system with excellent crystallinity. The semiconductor layer of the III-V group compound of the nitride system whose thickness is equal to or less than 8 &mgr;m, is provided onto a substrate made of sapphire. This reduces the bowing of the substrate due to differences in a thermal expansion coefficient and a lattice constant between the substrate and the semiconductor layer of the III-V group compound of the nitride system. An n-side contact layer forming the semiconductor layer of the III-V group of the nitride system has partially a lateral growth region made by growing in a lateral direction from a crystalline part of a seed crystal layer. In the lateral growth region, dislocation density restricts low, therefore, regions corresponding to the lateral growth region of each layer formed onto the n-side contact layer has excellent crystallinity.
摘要:
In a multi-beam semiconductor laser including nitride III–V compound semiconductor layers stacked on one surface of a substrate of sapphire or other material to form laser structures, and including a plurality of anode electrodes and a plurality of cathode electrodes formed on the nitride III–V compound semiconductor layers, one of the anode electrodes is formed to bridge over one of the cathode electrodes via an insulating film, and another anode electrode is formed to bridge over another of the cathode electrodes via an insulating film.
摘要:
A GaN compound semiconductor laser includes an AlGaN buried layer which buries opposite sides of a ridge stripe portion formed on a p-type AlGaN cladding layer. The AlGaN buried layer is made by first patterning an upper part of the p-type AlGaN cladding layer and a p-type GaN contact layer into a ridge stripe configuration by using a SiO2 film as an etching mask, then growing the AlGaN buried layer non-selectively on the entire substrate surface to bury both sides of the ridge stripe portion under the existence of the SiO2 film on the ridge stripe portion, and thereafter selectively removing the AlGaN buried layer from above the ridge stripe portion by etching using the SiO2 film as an etching stop layer. Thus, the GaN compound semiconductor laser is stabilized in the transverse mode, intensified in output power, and improved in lifetime.
摘要:
When making a growth mask on a substrate and using the growth mask to selectively grow nitride III-V compound semiconductors on the substrate, a multi-layered film including a nitride forming at least its top surface is used as the growth mask. The growth mask may be combination of an oxide film and a nitride film thereon, combination of a metal film and a nitride film thereon, combination of an oxide film, a film thereon made up of a nitride and an oxide, and a nitride film thereon, or combination of a first metal film, a second metal film thereon different from the first metal film and a nitride film thereon, for example. The oxide film may be a Si02, for example, the nitride film may be a TiN film or a SiN film, the film made up of a nitride and an oxide may be a SiNO film, and the metal film may be a Ti film or a Pt film, for example.
摘要:
A multi-beam semiconductor laser device capable of emitting respective laser beams with uniform optical output levels and enabling easy alignment is provided. This multi-beam semiconductor laser device (40) is a GaN base multi-beam semiconductor laser device provided with four laser stripes (42A, 42B, 42C and 42D) which are capable of emitting laser beams with the same wavelength. The respective laser oscillating regions (42A to 42D) are provided with a p-type common electrode (48) on a mesa structure (46) which is formed on a sapphire substrate (44), and have active regions (50A, 50B, 50C and 50D) respectively. Two n-type electrodes (52A and 52B) are provided on an n-type GaN contact layer (54) and located as common electrodes opposite to the p-type common electrode (48) on both sides of the mesa structure (46). The distance A between the laser stripe (42A) and the laser stripe (42D) is no larger than 100 μm. The distance B1 between the laser stripe (42A) and the n-type electrode (52B) is no larger than 150 μm while the distance B2 between the laser stripe (42D) and the n-type electrode (52A) is no larger than 150 μm.
摘要:
A multi-beam semiconductor laser device capable of emitting respective laser beams with uniform optical output levels and enabling easy alignment is provided. This multi-beam semiconductor laser device (40) is a GaN base multi-beam semiconductor laser device provided with four laser stripes (42A, 42B, 42C and 42D) which are capable of emitting laser beams with the same wavelength. The respective laser oscillating regions (42A to 42D) are provided with a p-type common electrode (48) on a mesa structure (46) which is formed on a sapphire substrate (44), and have active regions (50A, 50B, 50C and 50D) respectively. Two n-type electrodes (52A and 52B) are provided on an n-type GaN contact layer (54) and located as common electrodes opposite to the p-type common electrode (48) on both sides of the mesa structure (46). The distance A between the laser stripe (42A) and the laser stripe (42D) is no larger than 100 μm. The distance B1 between the laser stripe (42A) and the n-type electrode (52B) is no larger than 150 μM while the distance B2 between the laser stripe (42D) and the n-type electrode (52A) is no larger than 150 μm.
摘要:
A multi-beam semiconductor laser device capable of emitting respective laser beams with uniform optical output levels and enabling easy alignment is provided. This multi-beam semiconductor laser device (40) is a GaN base multi-beam semiconductor laser device provided with four laser stripes (42A, 42B, 42C and 42D) which are capable of emitting laser beams with the same wavelength. The respective laser oscillating regions (42A to 42D) are provided with a p-type common electrode (48) on a mesa structure (46) which is formed on a sapphire substrate (44), and have active regions (50A, 50B, 50C and 50D) respectively. Two n-type electrodes (52A and 52B) are provided on an n-type GaN contact layer (54) and located as common electrodes opposite to the p-type common electrode (48) on both sides of the mesa structure (46). The distance A between the laser stripe (42A) and the laser stripe (42D) is no larger than 100 μm. The distance B1 between the laser stripe (42A) and the n-type electrode (52B) is no larger than 150 μm while the distance B2 between the laser stripe (42D) and the n-type electrode (52A) is no larger than 150 μm.
摘要:
In a method for manufacturing a semiconductor device, the method includes the step of growing a nitride-based III-V compound semiconductor layer, which forms a device structure, directly on a substrate without growing a buffer layer, the substrate being made of a material with a hexagonal crystal structure and having a principal surface that is oriented off at an angle of not less than −0.5° and not more than 0° from an R-plane with respect to a direction of a C-axis.