摘要:
A semiconductor laser, a semiconductor device and a nitride series III-V group compound substrate capable of obtaining a crystal growth layer with less fluctuation of the crystallographic axes and capable of improving the device characteristics, as well as a manufacturing method therefor are provided. The semiconductor laser comprises, on one surface of a substrate used for growing, a plurality of spaced apart seed crystal layers and an n-side contact layer having a lateral growing region which is grown on the basis of the plurality of seed crystal layers. The seed crystal layer is formed in that a product of width w1 (unit: &mgr;m) at the boundary thereof relative to the n-side contact layer along the arranging direction A and a thickness t1 (unit: &mgr;m) along the direction of laminating the n-side contact layer is 15 or less. A semiconductor layer comprising a nitride series III-V group compound semiconductor is laminated on a substrate 11 comprising an n-type GaN. Protruded seed crystal portions are formed and a growth suppression layer having an opening corresponding to the seed crystal portion is disposed to the substrate. The semiconductor layer grows on the basis of the seed crystal portion and has a lateral growing region of low dislocation density.
摘要:
A semiconductor laser, a semiconductor device and a nitride series III-V group compound substrate capable of obtaining a crystal growth layer with less fluctuation of the crystallographic axes and capable of improving the device characteristics, as well as a manufacturing method therefor are provided. The semiconductor laser comprises, on one surface of a substrate used for growing, a plurality of spaced apart seed crystal layers and an n-side contact layer having a lateral growing region which is grown on the basis of the plurality of seed crystal layers. The seed crystal layer is formed in that a product of width w1 (unit: μm) at the boundary thereof relative to the n-side contact layer along the arranging direction A and a thickness t1 (unit: μm) along the direction of laminating the n-side contact layer is 15 or less. This can decrease the fluctuation of the crystallographic axes in the n-side contact layer. Accordingly, crystallinity of the semiconductor layer including from n-type clad layer to a p-side contact layer laminated on the n-side contact layer is improved. A semiconductor laser and a semiconductor device capable of decreasing dislocation density and improving device characteristics, as well as a manufacturing method therefor are provided. A semiconductor layer comprising a nitride series III-V group compound semiconductor is laminated on a substrate 11 comprising an n-type GaN. Protruded seed crystal portions are formed and a growth suppression layer having an opening corresponding to the seed crystal portion is disposed to the substrate. The semiconductor layer grows on the basis of the seed crystal portion and has a lateral growing region of low dislocation density. When a current injection region is disposed corresponding to the lateral growing region, the light emission efficiency can be improved. Further, when the growth suppression layer is provided with a function of reflecting or absorbing light generated in the semiconductor layer, it is possible to prevent leakage of light or intrusion of stray light from the substrate to suppress generation of noises.
摘要:
To provide a semiconductor device capable of preventing the bowing of the substrate, and having a semiconductor layer of a III-V group compound of a nitride system with excellent crystallinity. The semiconductor layer of the III-V group compound of the nitride system whose thickness is equal to or less than 8 &mgr;m, is provided onto a substrate made of sapphire. This reduces the bowing of the substrate due to differences in a thermal expansion coefficient and a lattice constant between the substrate and the semiconductor layer of the III-V group compound of the nitride system. An n-side contact layer forming the semiconductor layer of the III-V group of the nitride system has partially a lateral growth region made by growing in a lateral direction from a crystalline part of a seed crystal layer. In the lateral growth region, dislocation density restricts low, therefore, regions corresponding to the lateral growth region of each layer formed onto the n-side contact layer has excellent crystallinity.
摘要:
A nitride semiconductor having a large low-defect region in a surface thereof, and a semiconductor device using the same are provided. Also, a manufacturing method for a nitride semiconductor comprising a layer formation step using a transverse growth technique where surface defects can easily be reduced, and a manufacturing method for a semiconductor device using the same are provided. On a substrate, a seed crystal part is formed in a stripe pattern with a buffer layer in between. Next, crystals are grown from the seed crystal part in two stages of growth conditions to form a nitride semiconductor layer. Low temperature growing parts with a trapezoid shaped cross section are formed at a growth temperature of 1030° C. in the first stage and a transverse growth is dominantly advanced at a growth temperature of 1070° C. to form a high temperature growing part between the low temperature growing parts in the second stage. Thereby, hillocks and conventional lattice defects are reduced in a surface of the nitride semiconductor layer which is above the low temperature growing part.
摘要:
A nitride semiconductor having a large low-defect region in a surface thereof, and a semiconductor device using the same are provided. Also, a manufacturing method for a nitride semiconductor comprising a layer formation step using a transverse growth technique where surface defects can easily be reduced, and a manufacturing method for a semiconductor device using the same are provided. On a substrate, a seed crystal part is formed in a stripe pattern with a buffer layer in between. Next, crystals are grown from the seed crystal part in two stages of growth conditions to form a nitride semiconductor layer. Low temperature growing parts with a trapezoid shaped cross section are formed at a growth temperature of 1030° C. in the first stage and a transverse growth is dominantly advanced at a growth temperature of 1070° C. to form a high temperature growing part between the low temperature growing parts in the second stage. Thereby, hillocks and conventional lattice defects are reduced in a surface of the nitride semiconductor layer which is above the low temperature growing part.
摘要:
When GaN or other nitride III-V compound semiconductor layers are grown on a substrate such as a sapphire substrate, thickness x of the substrate relative to thickness y of the nitride III-V compound semiconductor layers is controlled to satisfy 0
摘要:
When GaN or other nitride III-V compound semiconductor layers are grown on a substrate such as a sapphire substrate, thickness x of the substrate relative to thickness y of the nitride III-V compound semiconductor layers is controlled to satisfy 0
摘要:
When GaN or other nitride III-V compound semiconductor layers are grown on a substrate such as a sapphire substrate, thickness x of the substrate relative to thickness y of the nitride III-V compound semiconductor layers is controlled to satisfy 0
摘要:
A semiconductor light emitting device made of nitride III-V compound semiconductors includes an active layer made of a first nitride III-V compound semiconductor containing In and Ga, such as InGaN; an intermediate layer made of a second nitride III-V compound semiconductor containing In and Ga and different from the first nitride III-V compound semiconductor, such as InGaN; and a cap layer made of a third nitride III-V compound semiconductor containing Al and Ga, such as p-type AlGaN, which are deposited in sequential contact.
摘要:
A semiconductor light emitting device made of nitride III-V compound semiconductors is includes an active layer made of a first nitride III-V compound semiconductor containing In and Ga, such as InGaN; an intermediate layer made of a second nitride III-V compound semiconductor containing In and Ga and different from the first nitride III-V compound semiconductor, such as InGaN; and a cap layer made of a third nitride III-V compound semiconductor containing Al and Ga, such as p-type AlGaN, which are deposited in sequential contact.