摘要:
The present disclosure provides a thermo-mechanically reliable copper TSV and a technique to form such TSV during BEOL processing. The TSV constitutes an annular trench which extends through the semiconductor substrate. The substrate defines the inner and outer sidewalls of the trench, which sidewalls are separated by a distance within the range of 5 to 10 microns. A conductive path comprising copper or a copper alloy extends within said trench from an upper surface of said first dielectric layer through said substrate. The substrate thickness can be 60 microns or less. A dielectric layer having interconnect metallization conductively connected to the conductive path is formed directly over said annular trench.
摘要:
A method of implementing three-dimensional (3D) integration of multiple integrated circuit (IC) devices includes forming a first insulating layer over a first IC device; forming a second insulating layer over a second IC device; forming a 3D, bonded IC device by aligning and bonding the first insulating layer to the second insulating layer so as to define a bonding interface therebetween, defining a first set of vias within the 3D bonded IC device, the first set of vias landing on conductive pads located within the first IC device, and defining a second set of vias within the 3D bonded IC device, the second set of vias landing on conductive pads located within the second device, such that the second set of vias passes through the bonding interface; and filling the first and second sets of vias with a conductive material.
摘要:
The present disclosure provides a thermo-mechanically reliable copper TSV and a technique to form such TSV during BEOL processing. The TSV constitutes an annular trench which extends through the semiconductor substrate. The substrate defines the inner and outer sidewalls of the trench, which sidewalls are separated by a distance within the range of 5 to 10 microns. A conductive path comprising copper or a copper alloy extends within said trench from an upper surface of said first dielectric layer through said substrate. The substrate thickness can be 60 microns or less. A dielectric layer having interconnect metallization conductively connected to the conductive path is formed directly over said annular trench.
摘要:
Disclosed are a structure including alignment marks and a method of forming alignment marks in three dimensional (3D) structures. The method includes forming apertures in a first surface of a first semiconductor substrate; joining the first surface of the first semiconductor substrate to a first surface of a second semiconductor substrate; thinning the first semiconductor on a second surface of the first semiconductor substrate to provide optical contrast between the apertures and the first semiconductor substrate; and aligning a feature on the second surface of the first semiconductor substrate using the apertures as at least one alignment mark.
摘要:
A first metallic diffusion barrier layer is formed on a last level metal plate exposed in an opening of a passivation layer. Optionally, a metallic adhesion promotion layer is formed on the first metallic diffusion barrier layer. An elemental metal conductive layer is formed on the metallic adhesion promotion layer, which provides a highly conductive structure that distributes current uniformly due to the higher electrical conductivity of the material than the layers above or below. A stack of the second metallic diffusion barrier layer and a wetting promotion layer is formed, on which a C4 ball is bonded. The elemental metal conductive layer distributes the current uniformly within the underbump metallurgy structure, which induces a more uniform current distribution in the C4 ball and enhanced electromigration resistance of the C4 ball.
摘要:
A first metallic diffusion barrier layer is formed on a last level metal plate exposed in an opening of a passivation layer. Optionally, a metallic adhesion promotion layer is formed on the first metallic diffusion barrier layer. An elemental metal conductive layer is formed on the metallic adhesion promotion layer, which provides a highly conductive structure that distributes current uniformly due to the higher electrical conductivity of the material than the layers above or below. A stack of the second metallic diffusion barrier layer and a wetting promotion layer is formed, on which a C4 ball is bonded. The elemental metal conductive layer distributes the current uniformly within the underbump metallurgy structure, which induces a more uniform current distribution in the C4 ball and enhanced electromigration resistance of the C4 ball.
摘要:
Disclosed are a structure including alignment marks and a method of forming alignment marks in three dimensional (3D) structures. The method includes forming apertures in a first surface of a first semiconductor substrate; joining the first surface of the first semiconductor substrate to a first surface of a second semiconductor substrate; thinning the first semiconductor on a second surface of the first semiconductor substrate to provide optical contrast between the apertures and the first semiconductor substrate; and aligning a feature on the second surface of the first semiconductor substrate using the apertures as at least one alignment mark.
摘要:
A method is provided for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer. Also provided is a tangible computer readable medium encoded with a program that comprises instructions for performing such a method.
摘要:
A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P− layer, and the P− layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P− layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P− layer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
摘要:
A 3D integrated circuit structure is provided. The 3D integrated circuit structure includes an interface wafer including a first wiring layer, a first active circuitry layer including active circuitry, and a wafer including active circuitry. The first active circuitry layer is bonded face down to the interface wafer, and the wafer is bonded face down to the first active circuitry layer. The first active circuitry layer is lower-cost than the wafer.