摘要:
An apparatus and method for analyzing a biological fluid sample is provided. The method includes the steps of: a) providing an analysis cartridge having a channel and an analysis chamber, wherein the channel is in fluid communication with the analysis chamber and includes at least one hydrophobic interior wall surface; b) admixing one or more anti-adsorption agents with fluid sample disposed within the channel, wherein the anti-adsorption agents are operable to inhibit adsorption of fluid sample onto the interior wall surface of the channel; c) moving the fluid sample into the analysis chamber; and d) analyzing the sample within the analysis chamber.
摘要:
An apparatus and method for analyzing a biological fluid sample is provided. The method includes the steps of: a) providing an analysis cartridge having a channel and an analysis chamber, wherein the channel is in fluid communication with the analysis chamber and includes at least one hydrophobic interior wall surface; b) admixing one or more anti-adsorption agents with fluid sample disposed within the channel, wherein the anti-adsorption agents are operable to inhibit adsorption of fluid sample onto the interior wall surface of the channel; c) moving the fluid sample into the analysis chamber; and d) analyzing the sample within the analysis chamber.
摘要:
A centrifuge vessel for performing immunoassays, affinity chromatography, and like experiments includes a center tube and an outer waste chamber. A biomaterial is held within the center tube and is capable of binding specific analytes in test samples. In operation the centrifuge vessel is rotated at high speed about its longitudinal axis, thereby causing all fluid within the center tube to be transported into the outer waste chamber while the analyte of interest remains bound to the biomaterial positioned within the center tube In the centrifuge vessel, a cap connected to the outer waste chamber and extending over the center tube includes structure for preventing waste fluid expelled to the waste chamber from re-entering the center tube. In a first embodiment, the cap is either constructed from or the inside surface is coated with a hydrophobic material which repels fluids back into the waste chamber. In a second embodiment, the cap includes a dam which allows fluid to pass into the waste chamber but blocks the migration of waste fluid back to the center tube. In a third embodiment, the cap includes a sponge that allows fluids in the center tube influenced by the intense centrifugal forces generated during high speed rotation to pass into the waste chamber, but which prevents fluids in the waste chamber, which are influenced by relatively weaker forces, from returning to the center tube.
摘要:
A method and device for detecting an antigenic material in which the device comprises a test utensil having an indentation in which two reagent spots are placed, the first body being a dyed substrate having a coating of an antibody or antibody-like material thereon and the second of the two reagent spots comprising a dyed test-inert material or a dyed substrate with a coating of a normal animal serum, the dye employed in the second reagent spot having a different color than that employed in the first spot. When a liquid test sample is added to the indentation, the dyed substrate particles or components are suspended or solubilized, and the resulting suspension gives the appearance of a third color. A positive agglutination test is indicated by the formation of at least one spot having the color of the first dyed substrate against a background having the color of the second dyed substrate.
摘要:
An automated immunoassay analyzer includes a computer controlled instrument (10) and display (16). The display (16) provides a real-time presentation of all operations being performed within the instrument (10). A large number of samples can be loaded into the instrument (10), and the order of testing the samples can be rearranged according to a priority determined by the operator at any time. A wide variety of immunoassays can be performed on each sample and several different immunoassays can be performed on any one sample. Information related to the type of immunoassays being performed on particular samples is collected by a bar code reader (44) and this information is conveyed to the computer (12) for presentation on the display (16). The computer (12) tracks the progress of each immunoassay through the reaction circuit to the detection station (46). The time to completion for particular immunoassays as well as the concentration information for recently completed immunoassays is provided in a readily usable format. The immunoassay automation process is improved by performing the washing operation with an assay tube (26) which allows water to be expelled by centrifugal forces generated by rotating the tube about its longitudinal axis; rather, than by using more conventional aspirating equipment. Bound label is detected by chemiluminescence using a photomultiplier tube (96).
摘要:
An instrument (50) automatically determines the concentrations of HDL cholesterol, LDL cholesterol, total cholesterol and triglycerides for a sample (80) of whole, anticoagulated blood placed in a doughnut shaped container (10). The sample (80) is first separated into its blood cell and plasma (84) constituents using high speed centrifugation (54) and a thixotropic gel (82). Part of the plasma (84) is then deposited in an HDL separation chamber (14) where LDL cholesterol and VLDL cholesterol are precipitated by a reagent and the precipitant is sedimented by high speed centrifugation (54) against V-shaped grooves (40) in the outermost wall (38) of the HDL separation chamber (14). Part of the plasma (84) is diluted ten-fold. The supernatant in the HDL separation chamber is then placed in a cuvette reaction chamber (b 18) where it reacts with a cholesterol reagent. The diluted plasma is placed in two other cuvette reaction chambers (18) where it reacts with chloesterol and triglycerides reagents, respectively. Calibration reagents, stored in storage chambers (20), react in two other cuvette reaction chambers (18) to establish a reference absorbance. A pipettor (58) handles all the fluid transfers in the doughnut shaped container (10) and operates in conjunction with a slow speed motor (56) that precisely moves the spindle (52) on which the doughnut shaped container (10) is mounted. A colorimetric measuring system (70, 72, and 74) monitors the absorbance of chemical reactions occurring in the cuvette chambers (18).
摘要:
Compositions and methods are disclosed for multiple simultaneous assays of different analytes using radioactive labeled antibodies to the analytes, at least one portion of the assay being an immunoradiometric assay in which there is employed a metal isotope label, e.g., .sup.57 Co, attached to an antibody to the analyte through a chelator, e.g., ethylenediaminetetraacetic acid. Multiple simultaneous immunoradiometric assays can be performed by this method, as can multiple simultaneous assays in which one portion of the assay is an immunoradiometric assay and another portion or portions involve one or more other radioassay techniques.
摘要:
Compounds useful in a simultaneous multiple assay for analytes such as steroids, proteins, peptides, carbohydrates or drugs. The compound or compounds are prepared by labelling an individual analyte with a radioisotope through a chelating agent to form a coordinated compound. The assay uses one or more chelated labelled analytes with one or more labelled analytes wherein each radioisotope is different.
摘要:
A high temperature box annealing furnace for metallic coil annealing practices. The furnace comprises a fixed base and a removable bell capable of achieving a sealed relationship with the base. The interior of the bell side walls, end walls and roof are lined with ceramic fiber insulation and are provided with electrical resistance heating elements. The heating elements are divided into at least two separately controllable zones, a first zone including the heating elements mounted on the bell roof and the upper portions of the bell side and end walls and a second zone including the heating elements mounted on the lower portion of the bell side and end walls. The base comprises a steel framework supporting a cast refractory base member configured to support one or more coils. Each coil is provided with a cover and the cast refractory base member provides a sand seal for the lower edge of the covers. The cast refractory base has an atmosphere inlet for each coil positioned at the center or eye of the coil. Cooling capacity for the furnace is provided by inlets and outlets for an appropriate cooling gas.