摘要:
A semiconductor laser device is constructed by stacking a buffer layer, an undoped GaN layer, an n-GaN contact layer, an n-InGaN crack preventing layer, an n-AlGaN cladding layer, a light emitting layer, a p-AlGaN cladding layer, and a p-GaN contact layer in this order. A ridge portion comprising the p-GaN contact layer and the p-AlGaN cladding layer is formed, and the thickness of the p-AlGaN cladding layer in the ridge portion is less than 0.3 μm.
摘要:
A nitride semiconductor laser element capable of controlling the lateral confinement of light with a good reproducibility, the nitride semiconductor element comprising an n-type cladding layer (3), an MQW light emitting layer (4) formed on the cladding layer (3), a p-type cladding layer (5) and a p-type contact layer (6) formed on the light emitting layer (4), and an ion implantation light absorbing layer (7) formed, by introducing carbon, in regions other than a current passing region (8) in the cladding layer (5) and the contact layer (6).
摘要:
In a semiconductor laser device, an AlGaN buffer layer, a GaN layer, an n-GaN layer, an n-AlGaN cladding layer, an MQW light emitting layer, a p-AlGaN cladding layer, a p-first GaN cap layer, a current blocking layer composed of n-AlGaN, and a p-second GaN cap layer are stacked in this order on a sapphire substrate, and a ridge portion having an upper surface having a width W1 is formed by etching. The current blocking layer has an opening having a width W2 on the upper surface of the ridge portion. The width W2 of the opening is smaller than the width W1 of the upper surface of the ridge portion. Accordingly, in a light emitting region of the MQW light emitting layer, a saturable light absorbing region is formed on both sides of a current injection region.
摘要:
A semiconductor laser with a self-sustained pulsation is disclosed in which a first cladding layer of first conductive type, an active layer and a second cladding layer of second conductive type having a striped ridge are formed in that order on a semiconductor substrate of first conductive type. The first and second cladding layers have a refractive index smaller than and a band gap larger than the active layer. A saturable optical absorbing layer having a band gap of energy substantially equal to the energy corresponding to lasing wavelength is formed in both the first and second cladding layers. Further, a barrier layer having a refractive index smaller than and a band gap larger than the first and second cladding layers is formed between the first cladding layer and the active layer and/or between the active layer and the second cladding layer.
摘要:
A semiconductor laser with a self-sustained pulsation is disclosed in which a first cladding layer of first conductive type, an active layer and a second cladding layer of second conductive type having a striped ridge are formed in that order on a semiconductor substrate of first conductive type. The first and second cladding layers have a refractive index smaller than and a band gap larger than the active layer. A saturable optical absorbing layer having a band gap of energy substantially equal to the energy corresponding to lasing wavelength is formed in both the first and second cladding layers. Further, a barrier layer having a refractive index smaller than and a band gap larger than the first and second cladding layers is formed between the first cladding layer and the active layer and/or between the active layer and the second cladding layer.
摘要:
A semiconductor laser with a self-sustained pulsation is disclosed in which a first cladding layer of first conductive type, an active layer and a second cladding layer of second conductive type having a striped ridge are formed in that order on a semiconductor substrate of first conductive type. The first and second cladding layers have a refractive index smaller than and a band gap larger than the active layer. A saturable optical absorbing layer having a band gap of energy substantially equal to the energy corresponding to lasing wavelength is formed in both the first and second cladding layers. Further, a barrier layer having a refractive index smaller than and a band gap larger than the first and second cladding layers is formed between the first cladding layer and the active layer and/or between the active layer and the second cladding layer.
摘要:
In a semiconductor laser device comprising an n-type cladding layer, an active layer formed on the cladding layer, a p-type cladding layer formed on the active layer, and a p-type saturable light absorbing layer provided in the p-type cladding layer, the current confinement width for confining current injected into the active layer being W, the thickness d.sub.a of the active layer, the optical confinement factor .GAMMA..sub.a of the active layer, the thickness d.sub.s of the saturable light absorbing layer, the optical confinement factor .GAMMA..sub.s of the saturable light absorbing layer, and the light spot size S on a facet of the semiconductor laser device are so set as to satisfy a predetermined relationship. The reflectivity on a light output facet is set in the range of 10 to 20%.
摘要:
An n-contact layer, an n-cladding layer, an MQW active layer, and a p-first cladding layer are formed in this order on a sapphire substrate. An n-current blocking layer having a striped opening is formed on the p-first cladding layer. The width of the striped opening gradually increases from W2 to W1 as the depth thereof decreases from a lower layer to an upper layer in the current blocking layer. A p-second cladding layer is formed on the n-current blocking layer and on the p-first cladding layer inside the striped opening. The p-second cladding layer comprises a lower layer having the width W2 at its lower end and an upper layer having a width W1 lager than the width W2.
摘要:
In a semiconductor laser device, a buffer layer, an n-contact layer, an n-light cladding layer, an n-light guide layer, an emission layer, a p-cap layer, a p-light guide layer and an n-current blocking layer having a striped opening are successively formed on a sapphire substrate, and a p-light cladding layer is formed in the opening. A p-contact layer is formed on the p-light cladding layer and on the n-current blocking layer. The n-current blocking layer is made of n-Al0.3Ga0.7N and has an electron concentration of 1×1017 cm−3 and an Al composition greater than 0.1, and the surface thereof is terminated with N.
摘要翻译:在半导体激光装置中,缓冲层,n接触层,n光包覆层,n光导层,发光层,p帽层,p导光层和n- 在蓝宝石基板上依次形成具有条纹开口的电流阻挡层,在开口部形成有p光包覆层。 p-接触层形成在p光覆层和n电流阻挡层上。 n电流阻挡层由n-Al 0.3 Ga 0.7 N制成,电子浓度为1×10 17 cm -3,Al组成大于0.1,其表面用N端接。
摘要:
A nitride semiconductor device of the self-pulsation type comprises as superposed on a substrate 1 an n-type cladding layer 3, active layer 4 and p-type cladding layer including an upwardly projecting stripe portion 53, an n-type current blocking layer 6 being formed at each of opposite sides of the stripe portion 53. The stripe portion 53 of the p-type cladding layer 5 comprises an upper stripe portion 51 and a lower stripe portion 52. The upper stripe portion 51 has a minimum width W1 at the position of the boundary between the upper and lower stripe portions 51, 52, and the lower stripe portion 52 has at the position of its lower end a width W2 greater than the minimum width W1 of the upper stripe portion 51. This construction realizes a higher yield than in the prior art.