摘要:
An electroluminescent component (1), in particular an LED chip, which has a high external efficiency in conjunction with a simple construction. The electroluminescent component (1) has a substrate (2); a plurality of radiation decoupling elements arranged at a distance next to one another on the substrate (2) and having an active layer stack (7) with an emission zone (8); and a contact element (9) on each radiation decoupling element (4). The contact elements (9), whose width (b′) is dimensioned such that it is less than the width (b) of the radiation decoupling elements (4), are arranged centrally on the radiation decoupling elements (4), and the width (b) of the radiation decoupling elements (4), for a given height (h), is chosen to be so small that a substantial proportion of the light (11) radiated laterally from the emission zone (8) can be decoupled directly through the side areas (12) of the radiation decoupling elements (4).
摘要:
An electroluminescent component (1), in particular an LED chip, which has a high external efficiency in conjunction with a simple construction. The electroluminescent component (1) has a substrate (2); a plurality of radiation decoupling elements arranged at a distance next to one another on the substrate (2) and having an active layer stack (7) with an emission zone (8); and a contact element (9) on each radiation decoupling element (4). The contact elements (9), whose width (b′) is dimensioned such that it is less than the width (b) of the radiation decoupling elements (4), are arranged centrally on the radiation decoupling elements (4), and the width (b) of the radiation decoupling elements (4), for a given height (h), is chosen to be so small that a substantial proportion of the light (11) radiated laterally from the emission zone (8) can be decoupled directly through the side areas (12) of the radiation decoupling elements (4).
摘要:
This invention describes a radiation-emitting semiconductor component with the a multilayered structure (4) that contains a radiation-emitting active layer (5), and a window (1) transparent to radiation that has a first principal face (2) and a second principal face (3) opposite the first principal face (2), and whose first principal face (2) adjoins the multilayered structure (4).At least one recess (8) is made in the window (1), which preferably has the form of an indentation of the second principal face or as an edge excavation. At least one lateral surface of the window (1) or of the recess (8) is provided at least partially with a contact surface (11). Alternatively or cumulatively, at least one contact surface of the component has a plurality of openings (14).
摘要:
This invention describes a radiation-emitting semiconductor component with the a multilayered structure that contains a radiation-emitting active layer, and a window transparent to radiation that has a first principal face and a second principal face opposite the first principal face, and whose first principal face adjoins the multilayered structure. At least one recess is made in the window, which preferably has the form of an indentation of the second principal face or as an edge excavation. At least one lateral surface of the window or of the recess is provided at least partially with a contact surface. Alternatively or cumulatively, at least one contact surface of the component has a plurality of openings.
摘要:
A process for producing a semiconductor device includes the following sequential steps: producing a semiconductor body having an AlxGa1−xAs layer with an upper surface, where x≦0.40; applying a contact metallization made of a non-noble metallic material to the AlxGa1−xAs layer; precleaning a semiconductor surface to produce a hydrophilic semiconductor surface; roughening the upper surface of the AlxGa1−xAs layer by etching with an etching mixture of hydrogen peroxide ≧30% and hydrofluoric acid ≧40% (1000:6) for a period of from 1 to 2.5 minutes; and re-etching with a dilute mineral acid. According to another embodiment, 0≦x≦1 and the upper surface of the AlxGa1−xAs layer is roughened by etching with nitric acid 65% at temperatures of between 0° C. and 30° C.
摘要翻译:制造半导体器件的方法包括以下顺序步骤:制备具有上表面的Al x Ga 1-x As层的半导体本体,其中x <= 0.40; 将由非贵金属材料制成的接触金属化应用于Al x Ga 1-x As层; 预清洁半导体表面以产生亲水性半导体表面; 通过用过氧化氢> = 30%和氢氟酸≥40%(1000:6)的蚀刻混合物蚀刻1至2.5分钟来使Al x Ga 1-x As层的上表面粗糙化; 并用稀释的无机酸重新蚀刻。 根据另一个实施方案,通过在0℃至30℃的温度下用硝酸蚀刻65%使0≤x≤1并且Al x Ga 1-x As层的上表面被粗糙化。
摘要:
A process for producing a semiconductor device includes the following sequential steps: producing a semiconductor body having an Al.sub.x Ga.sub.1-x As layer with an upper surface, where x.ltoreq.0.40; applying a contact metallization made of a non-noble metallic material to the Al.sub.x Ga.sub.1-x As layer; precleaning a semiconductor surface to produce a hydrophilic semiconductor surface; roughening the upper surface of the Al.sub.x Ga.sub.1-x As layer by etching with an etching mixture of hydrogen peroxide.gtoreq.30% and hydrofluoric acid.gtoreq.40% (1000:6) for a period of from 1 to 2.5 minutes; and re-etching with a dilute mineral acid. According to another embodiment, 0.ltoreq.x.ltoreq.1 and the upper surface of the Al.sub.x Ga.sub.1-x As layer is roughened by etching with nitric acid 65% at temperatures of between 0.degree. C. and 30.degree. C.
摘要翻译:一种制造半导体器件的方法包括以下顺序步骤:制备具有上表面的Al x Ga 1-x As层的半导体本体,其中x <0.40; 将由非贵金属材料制成的接触金属化应用于Al x Ga 1-x As层; 预清洁半导体表面以产生亲水性半导体表面; 通过用过氧化氢> 30%和氢氟酸≥40%(1000:6)的蚀刻混合物进行1〜2.5分钟的时间,使Al x Ga 1-x As层的上表面粗糙化; 并用稀释的无机酸重新蚀刻。 根据另一个实施方案,通过在0℃至30℃的温度下用硝酸蚀刻65%使0≤x≤1并且Al x Ga 1-x As层的上表面被粗糙化。
摘要:
A radiation emitter component, in particular an infrared emitter component with a conventional light-emitting diode housing, includes two electrode connections, one of which has a well-shaped reflector. The housing has an optically transparent, electrically non-conducting encapsulation material. A semiconductor laser chip is fastened in a well-shaped reflector of the light-emitting diode housing. The semiconductor laser chip has a quantum well structure, in particular with a strained layer structure, for example MOVPE epitaxial layers with a layer sequence GaAlAs-InGaAs-GaAlAs. A diffusor material can be inserted into the optically transparent, electrically non-conducting material of the light-emitting diode housing. The diffusor material is constructed or inserted with regard to type and concentration in such a way that in connection with the semiconductor laser chip encapsulated in the light-emitting diode housing, a radiation characteristic curve or an increase of an effective emission surface is produced that is comparable to that of a conventional infrared light-emitting diode.
摘要:
A method for producing at least one semiconductor body by metal organic vapor phase epitaxy (MOVPE). The semiconductor body is formed of a layer sequence with an active zone applied to a semiconductor wafer. By dry etching, the layer sequence is provided with at least one mesa trench whose depth is at least great enough that the active zone of the layer sequence is severed. Next, the composite including the semiconductor wafer and the layer sequence is severed in such a way that the at least one semiconductor body is created with at least one mesa edge.
摘要:
Semiconductor chips are produced from a wafer. The semiconductor chips are separated from one another by etching the wafer all the way through, by a dry etching process, in defined separation zones between the semiconductor chips. Initially, first etching trenches for separating the p-n junctions are etched into the wafer. Then, second etching trenches are etched from the opposite side of the wafer until the individual semiconductor chips are completely separated.
摘要:
A light emitting diode includes a doped semiconductor substrate wafer with a layer sequence suitable for light emission in the green spectral range epitaxially applied thereon. A zinc-doped contact is applied to the p-conductive side of the wafer for efficient generation of pure green light emissions. An electrically conductive layer is provided between the zinc-doped contact and the p-conductive wafer side to suppress diffusion of oxygen into the p-conductive wafer side during diode manufacture.