摘要:
It is an object of the present invention to attain a microstructure having a miniature continuous structure which has high throughput and has been processed with high accuracy. To achieve this, provided is a microstructure having a column-shaped structure and a slit-forming portion which extends in a side-face direction from a side face of the column-shaped structure, wherein the slit-forming portion has a plurality of slits aligned in parallel at an interval from 20 to 1,000 nm in a direction along a center axis of the column-shaped structure.
摘要:
After a sample is previously separated into plural components in a channel formed in a microchip (353), the channel is irradiated along a separation direction with a laser beam from a laser oscillator (361) to sequentially ionize each fraction separated in the channel. The ionized fraction is detected by a mass spectrometry unit (363) and analyzed by an analytical result analyzing unit (371). The analytical result is stored in a memory (369) while associated with position information in a driver control unit (367) and information on laser beam irradiation condition in a laser control unit (373), and the analytical result is imaged by an imaging unit (375). The imaged analytical result is displayed on a display (377).
摘要:
A reaction apparatus (10) includes a substrate (12) and a plurality of columnar members (14) formed on the substrate (12). Oligonucleotides for immobilization (16) having sequences complementary to sequences of both ends of a starting template DNA (18) is adhered on the surfaces of the substrate (12) and the columnar members (14). The starting template DNA (18) can be immobilized over the adjacent columnar members (14) by introducing the starting template DNA (18) under the elongated condition. PCR is conducted in such condition.
摘要:
A diagnosis supporting system (10) includes a diagnosis data obtaining unit (20) that obtains diagnosis data in which a movement parameter reflecting a movement speed of each component in separating a sample collected from a test subject into plural components with a chip (12) and a character of each component is in correspondence, a parameter storing unit (34) that stores the movement parameter of a characteristic component showing a state of suffering from a specific disease in correspondence with the disease, a relationship data storing unit (35) that stores relationship data showing a relationship between the character of the characteristic component and a possibility of suffering from a specific disease, a detecting unit (21) that detects the characteristic component from the diagnosis data based on the movement parameter of the characteristic component and the movement parameter of the diagnosis data by making reference to the parameter storing unit (34), and an inference processing unit (22) that infers the possibility that the test subject is suffering by making reference to the relationship data storing unit (35) based on the character of the detected characteristic component.
摘要:
A liquid sample (104) introduced in a main flow passage (101) is held in a dam portion (105), and a trigger liquid (106) is filled in a trigger flow passage (102). In this state, the trigger liquid (106) is further introduced at desired timing into the trigger flow passage (102) so that the front end portion of the level of the trigger liquid (106) is advanced and the front end portion is brought to be into contact with the dam portion (105). This causes the liquid sample (104) to move to the right (downstream side) in the figure, resulting in the liquid sample (104) flowing out to the downstream side of the main flow passage (101). This means that the trigger liquid (106) provides priming to realize a liquid switch.
摘要:
A sample-carrier complex (119) is introduced into a sample introducing portion (107), and the sample-carrier complex (119) is moved and deposited on a damming portion (111). The damming portion (111) is heated at a stage in which the predetermined amount of sample-carrier complex (119) is deposited on the damming portion (111). A temperature is increased to a predetermined temperature to break down the sample-carrier complex (119) into a sample (121) and a carrier (123). A voltage is applied between the sample introducing portion (107) and a sample recovery portion (109) to cause the sample (121) to pass through a gap between columnar bodies (115) and move into a second channel (106) to perform predetermined separation and analysis or recovery operation.
摘要:
A channel (103) is formed in a substrate (101), and a portion of the channel (103) is provided with a separating portion (107). A number of pillars are formed in the separating portion (107), and an adsorptive substance layer having an adsorptive substance, which exhibits a specific interaction for a specific substance, immobilized on the surface thereof, is formed. Once a sample is introduced into the channel (103), the specific substance is adsorbed on the adsorptive substance layer to be separated from other components. After washing the inside of the channel (103) with a buffer solution, the specific substance is desorbed from the adsorptive substance layer by flowing a eluting solution through the channel (103) and the specific substance is recovered.
摘要:
A fractionating apparatus is used for fractionating sample into micro-structures different in size, and includes a fractionating unit formed with a fractionating passage; the fractionating passage is defined in a groove formed in a substrate of the fractionating unit, and pillar patches are formed in the groove at intervals wider than the gap among the pillar patches; while the sample is migrated through the fractionating passage, small-sized DNA molecules are trapped in the pillar patches, and large-sized DNA molecules are smoothly migrated through the wide intervals; this results in that the large-sized DNA molecules reaches the end of the fractionating passage faster than the small-sized DNA molecules without clogging.
摘要:
A channel (1) formed in a substrate (41) branches into channels (2, 3) at a branch point (43). On this branch point, obstacles (8) having a columnar structure are aligned at certain intervals.
摘要:
After a sample is previously separated into plural components in a channel formed in a microchip (353), the channel is irradiated along a separation direction with a laser beam from a laser oscillator (361) to sequentially ionize each fraction separated in the channel. The ionized fraction is detected by a mass spectrometry unit (363) and analyzed by an analytical result analyzing unit (371). The analytical result is stored in a memory (369) while associated with position information in a driver control unit (367) and information on laser beam irradiation condition in a laser control unit (373), and the analytical result is imaged by an imaging unit (375). The imaged analytical result is displayed on a display (377).