Abstract:
An image pickup unit includes an image pickup device, an objective lens, and a prism that has a reflective surface. The image pickup unit includes: a projecting portion that is an area at which the image pickup device projects to the rear from the prism; a terminal portion provided on the projecting portion; a flexible printed wiring board that extends along the prism and the projecting portion; an image pickup device connection terminal portion formed on a face that faces the projecting portion of the flexible printed wiring board; and a cable connection terminal portion formed at an area that extends over the projecting portion of the flexible printed wiring board. The terminal portion and the image pickup device connection terminal portion are joined in an opposed state. An electronic component is mounted on a face on an opposite side to the reflective surface of the flexible printed wiring board.
Abstract:
A mount assembly includes a member in which a mount component is mounted at least on one main face of the member and at which a member connecting electrode is formed; and a connection member that has a pillar-shaped parallel portion arranged so that a longitudinal direction of the parallel portion is parallel to the main face of the member, one end side of the parallel portion being connected to the member connecting electrode.
Abstract:
A stacked mounting structure and a method of manufacturing stacked mounting structure are provided. The stacked mounting structure includes a plurality of members provided with a mounting area which is necessary for installing and operating components to be mounted on at least one principal surface, and an area for connections for signal transfer for operating the components to be mounted, and an electroconductive member which is disposed on the area for connections between the mutually facing members, and a cross section of the electroconductive member is same as or smaller than the area for connections, and an end portion of the electroconductive member is extended from a principal surface of one member up to a principal surface of the other member, and a height of the electroconductive member regulates a distance of the mounting area.
Abstract:
An imaging apparatus mount assembly for an image sensor chip includes a substrate, a plurality of first pins and at least one first electronic component, both mounted on a first surface of the substrate, and a first resin sealant configured to seal the first surface so as to expose an end face of a first shaft section opposite to where a first connecting section is provided. A plurality of second pins and at least one second electronic component are both mounted on a second surf ace of the substrate. A second resin sealant is configured to seal the second surface so as to expose an end face of a second shaft section opposite to where a second connecting section is provided. The image sensor chip includes a light receiving unit and a back-surface electrode, the first shaft section exposed on the first resin sealant is connected to the back-surface electrode.
Abstract:
An imaging unit includes: an imager that receives and photoelectrically converts light from a target to be captured; a branching unit that branches a signal from the imager into two signals; a first converter into which one of the two signals is input to convert the input signal into an optical signal; a second converter into which the other of the two signals is input to convert the input signal into an electric signal; a first output unit that outputs the optical signal; a second output unit that outputs the electric signal; a detector that detects a unit connected to the imaging unit; and a controller that causes the first output unit to output the optical signal if the unit detected by the detector is the control unit, and causes the second output unit to output the electric signal if the unit detected by the detector is the inspection unit.
Abstract:
A mount assembly includes a member in which a mount component is mounted at least on one main face of the member and at which a member connecting electrode is formed; and a connection member that has a pillar-shaped parallel portion arranged so that a longitudinal direction of the parallel portion is parallel to the main face of the member, one end side of the parallel portion being connected to the member connecting electrode.
Abstract:
A photoelectric conversion connector, includes: an optical element that performs one of inputting and outputting an optical signal; an electric element that controls one of a light emission and a light reception of the optical element; and at least one substrate on which the electric element and the optical element are mounted, the substrate including an aligning and connecting part that allows connecting an optical fiber that performs one of inputting an optical signal output from the optical element and outputting an optical signal input to the optical element, the aligning and connecting part being provided on a surface different from a surface on which the optical element are mounted of the substrate, the optical fiber being connected to the substrate via the aligning and connecting part, and the optical element and the optical fiber being arranged and mounted in line along a direction of a thickness of the substrate.
Abstract:
A cable connection structure manufacturing method includes: covering, by a first electrode, an end face of an electric cable, and covering, by a second electrode, a terminal of a substrate; plastically deforming the first electrode and the second electrode having substantially same hardness by first scrubbing in which the first electrode and the second electrode rub against each other at a first pressure and a first amplitude; polishing the first electrode and the second electrode by second scrubbing in which the first electrode and the second electrode rub against each other at a second pressure smaller than the first pressure and a second amplitude smaller than the first amplitude; and bonding the first electrode and the second electrode at a third pressure higher than the first pressure.
Abstract:
An imaging module includes: an imaging unit including a light receiving unit having a plurality of pixels arranged in a specified shape including a lattice shape and configured to receive light and to perform photoelectric conversion on the received light, the imaging unit being configured to capture an image of a subject and to output the image as a light quantity signal; a signal processing unit configured to perform signal processing on the light quantity signal; and a flexible substrate which includes a bendable insulating film and on which the imaging unit and the signal processing unit are mounted. The flexible substrate is bent to arrange the signal processing unit and the flexible substrate in a space extending from an outer edge of an incident surface of the imaging unit in a direction perpendicular to the incident surface while maintaining a shape of the outer edge.
Abstract:
A cable connection structure includes an electric cable, an end face of a core wire of which is exposed, a first electrode that covers the end face, a substrate, a terminal of which is exposed on a principal surface, and a second electrode bonded to the first electrode without another member interposed between the first electrode and the second electrode, the second electrode covering the terminal and having substantially same Vickers hardness as Vickers hardness of the first electrode.