摘要:
Very low resistance, scaled in MOSFET devices are formed by employing thin silicidation-stop extension that act both as a silicidation “stop” barriers and as thin interface layers between source/drain silicide regions and channel region of the MOSFET. By acting as silicidation stops, the silicidation-stop extensions confine silicidation, and are not breached by source/drain silicide. This permits extremely thin, highly-doped silicidation-stop extensions to be formed between the silicide and the channel, providing an essentially ideal, low series resistance interface between the silicide an the channel. On an appropriately prepared substrate, a selective etching process is performed to expose the sides of the channel region (transistor body). A very thin layer of a silicidation-stop material, e.g., SiGe, is disposed in the etched away area, coating the exposed sides of the channel region. The silicidation-stop material is doped (highly) appropriately for the type of MOSFET being formed (n-channel or p-channel). The etched away areas are then filled with silicon, e.g., by an Si epi process. Silicidation is then performed (to form, e.g., CoSi2) on the newly filled areas. The silicidation stop material constrains silicidation to the silicon fill material, but prevents silicide expansion past the silicidation stop material. Because the germanium (Ge) in SiGe is insoluble in CoSi2, the SiGe acts as a barrier to silicidation, permitting silicidation to go to completion in the Si fill but stopping silicidation at the SiGe boundary when silicidation is performed at a temperature above a silicidation threshold temperature for Si, but below a silicidation threshold temperature for SiGe. This results in a very compact, well-defined lateral junction characterized by a thin layer of SiGe disposed between silicide lateral extensions and the sides of the channel region. Because of the thin, highly-doped SiGe layer between the channel and the silicide lateral extensions, the extension resistance is very low.
摘要:
field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETs. The FETs have a device channel and a gate above the device channel with a doped source/drain extension at said each end of the thin channel. A portion of a low resistance material layer (e.g., a silicide layer) is disposed on source/drain extensions. The portions on the doped extensions laterally form a direct contact with the doped source/drain extension. Any low resistance material layer on the gate is separated from the low resistance material portions on the source/drain extensions.
摘要:
A field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETs. The FETs have a device channel and a gate above the device channel with a doped source/drain extension at said each end of the thin channel. A portion of a low resistance material layer (e.g., a silicide layer) is disposed on source/drain extensions. The portions on the doped extensions laterally form a direct contact with the doped source/drain extension. Any low resistance material layer on the gate is separated from the low resistance material portions on the source/drain extensions.
摘要:
Very low resistance, scaled in MOSFET devices are formed by employing thin silicidation-stop extension that act both as a silicidation “stop” barriers and as thin interface layers between source/drain silicide regions and channel region of the MOSFET. By acting as silicidation stops, the silicidation-stop extensions confine silicidation, and are not breached by source/drain silicide. This permits extremely thin, highly-doped silicidation-stop extensions to be formed between the silicide and the channel, providing an essentially ideal, low series resistance interface between the silicide and the channel.
摘要:
In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nFET and PFET), carrier mobility is enhanced or otherwise regulated through the reacting the material of the gate electrode with a metal to produce a stressed alloy (preferably CoSi2, NiSi, or PdSi) within a transistor gate. In the case of both the nFET and pFET, the inherent stress of the respective alloy results in an opposite stress on the channel of respective transistor. By maintaining opposite stresses in the nFET and pFET alloys or silicides, both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.
摘要:
A gate structure for a semiconductor transistor is disclosed. In an exemplary embodiment, the gate structure includes a lower polysilicon region doped at a first dopant concentration and an upper polysilicon region doped at a second concentration, with the second concentration being different than the first concentration. A conductive barrier layer is disposed between the lower and the upper polysilicon regions, wherein the conductive barrier layer prevents diffusion of impurities between the lower and the upper polysilicon regions.
摘要:
A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
摘要:
The present invention provides a strained-Si structure, in which the nFET regions of the structure are strained in tension and the pFET regions of the structure are strained in compression. Broadly the strained-Si structure comprises a substrate, a first layered stack atop the substrate, the first layered stack comprising a first Si-containing portion of the substrates a compressive layer atop the Si-containing portion of the substrate, and a semiconducting silicon layer atop the compressive layer; and a second layered stack atop the substrate, the second layered stack comprising a second-silicon containing layer portion of the substrate, a tensile layer atop the second Si-containing portion of the substrate, and a second semiconducting silicon-layer atop the tensile layer.
摘要:
A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material form a first island and second island at an pFET region and a nFET region, respectively. A tensile hard mask is formed on the first and the second island layer prior to forming finFETs. An Si epitaxial layer is grown on the sidewalls of the finFETs with the hard mask, now a capping layer which is under tension, preventing lateral buckling of the NFET fin.
摘要:
A method for manufacturing an integrated circuit comprising a plurality of semiconductor devices including an n-type field effect transistor and a p-type field effect transistor by covering the p-type field effect transistor with a mask, and oxidizing a portion of a gate polysilicon of the n-type field effect transistor, such that tensile mechanical stresses are formed within a channel of the n-type field effect transistor.