摘要:
field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETs. The FETs have a device channel and a gate above the device channel with a doped source/drain extension at said each end of the thin channel. A portion of a low resistance material layer (e.g., a silicide layer) is disposed on source/drain extensions. The portions on the doped extensions laterally form a direct contact with the doped source/drain extension. Any low resistance material layer on the gate is separated from the low resistance material portions on the source/drain extensions.
摘要:
A field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETs. The FETs have a device channel and a gate above the device channel with a doped source/drain extension at said each end of the thin channel. A portion of a low resistance material layer (e.g., a silicide layer) is disposed on source/drain extensions. The portions on the doped extensions laterally form a direct contact with the doped source/drain extension. Any low resistance material layer on the gate is separated from the low resistance material portions on the source/drain extensions.
摘要:
Very low resistance, scaled in MOSFET devices are formed by employing thin silicidation-stop extension that act both as a silicidation “stop” barriers and as thin interface layers between source/drain silicide regions and channel region of the MOSFET. By acting as silicidation stops, the silicidation-stop extensions confine silicidation, and are not breached by source/drain silicide. This permits extremely thin, highly-doped silicidation-stop extensions to be formed between the silicide and the channel, providing an essentially ideal, low series resistance interface between the silicide an the channel. On an appropriately prepared substrate, a selective etching process is performed to expose the sides of the channel region (transistor body). A very thin layer of a silicidation-stop material, e.g., SiGe, is disposed in the etched away area, coating the exposed sides of the channel region. The silicidation-stop material is doped (highly) appropriately for the type of MOSFET being formed (n-channel or p-channel). The etched away areas are then filled with silicon, e.g., by an Si epi process. Silicidation is then performed (to form, e.g., CoSi2) on the newly filled areas. The silicidation stop material constrains silicidation to the silicon fill material, but prevents silicide expansion past the silicidation stop material. Because the germanium (Ge) in SiGe is insoluble in CoSi2, the SiGe acts as a barrier to silicidation, permitting silicidation to go to completion in the Si fill but stopping silicidation at the SiGe boundary when silicidation is performed at a temperature above a silicidation threshold temperature for Si, but below a silicidation threshold temperature for SiGe. This results in a very compact, well-defined lateral junction characterized by a thin layer of SiGe disposed between silicide lateral extensions and the sides of the channel region. Because of the thin, highly-doped SiGe layer between the channel and the silicide lateral extensions, the extension resistance is very low.
摘要:
An integrated circuit is provided including an FET gate structure formed on a substrate. This structure includes a gate dielectric on the substrate, and a metal nitride layer overlying the gate dielectric and in contact therewith. This metal nitride layer is characterized as MNx, where M is one of W, Re, Zr, and Hf, and x is in the range of about 0.7 to about 1.5. Preferably the layer is of WNx, and x is about 0.9. Varying the nitrogen concentration in the nitride layer permits integration of different FET characteristics on the same chip. In particular, varying x in the WNx layer permits adjustment of the threshold voltage in the different FETs. The polysilicon depletion effect is substantially reduced, and the gate structure can be made thermally stable up to about 1000° C.
摘要:
A conductive structure in an integrated circuit (12), and a method of forming the structure, is provided that includes a polysilicon layer (30), a thin layer containing titanium over the polysilicon, a tungsten nitride layer (34) over the titanium-containing layer and a tungsten layer over the tungsten nitride layer. The structure also includes a silicon nitride interfacial region (38) between the polysilicon layer and the titanium-containing layer. The structure withstands high-temperature processing without substantial formation of metal silicides in the polysilicon layer (30) and the tungsten layer (32), and provides low interface resistance between the tungsten layer and the polysilicon layer.
摘要:
An integrated circuit is provided including an FET gate structure formed on a substrate. This structure includes a gate dielectric on the substrate, and a metal nitride layer overlying the gate dielectric and in contact therewith. This metal nitride layer is characterized as MNx, where M is one of W, Re, Zr, and Hf, and x is in the range of about 0.7 to about 1.5. Preferably the layer is of WNx, and x is about 0.9. Varying the nitrogen concentration in the nitride layer permits integration of different FET characteristics on the same chip. In particular, varying x in the WNx layer permits adjustment of the threshold voltage in the different FETs. The polysilicon depletion effect is substantially reduced, and the gate structure can be made thermally stable up to about 1000° C.
摘要翻译:提供了一种集成电路,其包括形成在衬底上的FET栅极结构。 该结构包括衬底上的栅极电介质和覆盖栅极电介质并与其接触的金属氮化物层。 该金属氮化物层的特征在于MN x,其中M是W,Re,Zr和Hf之一,x在约0.7至约1.5的范围内。 优选地,该层为W N x X,x为约0.9。 改变氮化物层中的氮浓度允许在同一芯片上集成不同的FET特性。 特别地,在WN SUB>层中改变x允许调节不同FET中的阈值电压。 多晶硅耗尽效应显着降低,并且栅极结构可以在高达约1000℃下热稳定。
摘要:
A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
摘要:
In an interconnect structure of an integrated circuit, a diffusion barrier film in a damascene structure is formed of a film having the composition TaNx, where x is greater than 1.2 and with a thickness of 0.5 to 5 nm.
摘要翻译:在集成电路的互连结构中,镶嵌结构中的扩散阻挡膜由具有组成TaN x x的膜形成,其中x大于1.2,厚度为0.5至5nm 。
摘要:
Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
摘要:
The present invention provides a method for forming a self-aligned Ni alloy silicide contact. The method of the present invention begins by first depositing a conductive Ni alloy with Pt and optionally at least one of the following metals Pd, Rh, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W or Re over an entire semiconductor structure which includes at least one gate stack region. An oxygen diffusion barrier comprising, for example, Ti, TiN or W is deposited over the structure to prevent oxidation of the metals. An annealing step is then employed to cause formation of a NiSi, PtSi contact in regions in which the metals are in contact with silicon. The metal that is in direct contact with insulating material such as SiO2 and Si3N4 is not converted into a metal alloy silicide contact during the annealing step. A selective etching step is then performed to remove unreacted metal from the sidewalls of the spacers and trench isolation regions.