摘要:
The invention relates to an A/D conversion device intended to supply at the output a digital signal Vout[0:7] resulting from the conversion of an analog input voltage Vin and receiving a control signal CRS used for defining the transfer characteristic of the device by way of comparison with the output signal Vout[0:7]. According to the invention, such a device comprises a reference module (AO, CMP2) which allows adjustment of the digital value of the output signal Vout[0:7] at a predetermined value when the analog input voltage Vin is zero, and means (Mx, Vact) for substituting for said voltage Vin a reference voltage Vref having a predetermined value when the device is in its control mode.
摘要:
A protection circuit (100, 700) is disclosed for protecting an integrated circuit having a first supply rail (Vcc) and a second supply rail (Vss) from exposure to an excessive voltage. The protection circuit (100, 700) comprises a sensor (120) for sensing a voltage increase on the first supply rail (Vcc). Such a sensor may be implemented as an RC element. The sensor (120) has an output coupled to a signal path for providing a detection signal on said path. The sensor (120) triggers a clamping circuit (180) to clamp the first supply rail (Vcc) to the second supply rail (Vss) in response to the detection signal, which typically signals an ESD event on the supply rails. A pre-amplifying stage (160) is coupled between the sensor (120) and the clamping circuit (180) to amplify the detection signal for the clamping circuit (180). The protection circuit further comprises a hold circuit (140) for holding the control input of the pre-amplifying stage (160) in an enabled state upon termination of the detection signal. Such a hold circuit may comprise a further RC element for accelerating the activation of the clamping circuit (180) and extending the activation of the clamping circuit beyond the termination of the detection signal, thus yielding a more efficient protection circuit (100, 700).
摘要:
A method for controlling a modulation signal for modulating a phase locked loop. A scaling control signal for scaling the modulation signal is generated using the error signal of the phase locked loop. The scaling control signal is adjusted when the modulation signal and the phase of the modulation signal have the same sign.
摘要:
An analog-to-digital converter (ADC1) of the Sigma Delta type provides a stream of digital output samples (OUT) in response to an analog input signal (IN). The analog-to-digital converter (ADC1) comprises a quantizer (QNT) that has a dead zone. The quantizer (QNT) provides a digital output sample that has a neutral value when the quantizer (QNT) receives an input signal whose amplitude is within the dead zone. A feedback path (DAC) within the analog-to-digital converter (ADC1) provides a feedback action only in response to a digital output sample that has a value other than the neutral value.
摘要:
A known phase-control loop comprises an oscillator having a controllable frequency, a frequency divider and a phase comparator which compares a reference signal (CKREF) with the signal at the output of the frequency divider and controls the frequency of the oscillator.The circuit also comprises, at the output of the oscillator, a phase shifter which supplies a signal (CKN0) at a multiple frequency of the input frequency and shifted in phase with respect to the signal of the oscillator, and a synchronizing module which may be simply constituted by a D flipflop with the input D connected to the output of the divider, and the input CLK connected to the output of the phase shifter, and which supplies a signal (CKREF0) at the frequency of the input signal (CKREF) but is locked at the output signal of the phase shifter.
摘要:
A digitally controlled variable capacitance integrated electronic circuit module (100) comprises a set of basic cells in a matrix arrangement. Each basic cell itself comprises a functional block (11) which can be switched between two individual capacitance values, a control block (12), and a control junction connecting the control block and the functional block of said basic cell. The functional blocks and the control blocks are grouped into separate regions (110, 120) of the matrix arrangement, to reduce capacitive interaction between output paths and power supply paths of the module. The functional blocks can still be switched in a winding path order within the matrix arrangement. A module of the invention can be used in an oscillator capable of producing a signal at 4 GHz.
摘要:
A circuit arrangement is described comprising a first receiver configured to receive a first input signal, a second receiver configured to receive a second input signal, a first signal generator configured to generate a first pulse signal, a second signal generator configured to generate a second pulse signal, wherein a delay between a rising edge of the first pulse signal and a rising edge of the second pulse signal is proportional to a difference between the first input signal and the second input signal, a first converter configured to convert the first pulse signal to a first digital number proportional to a width of the first pulse signal, a second converter configured to convert the second pulse signal to a second digital number proportional to a width of the second pulse signal, wherein at least one of the first converter and the second converter comprises a cascade of at least two converter stages, wherein each converter stage of the at least two converter stages is configured to propagate and shrink the respective pulse signal. Also a corresponding method is described.
摘要:
An analog-to-digital converter (ADC1) of the Sigma Delta type provides a stream of digital output samples (OUT) in response to an analog input signal (IN). The analog-to-digital converter (ADC1) comprises a quantizer (QNT) that has a dead zone. The quantizer (QNT) provides a digital output sample that has a neutral value when the quantizer (QNT) receives an input signal whose amplitude is within the dead zone. A feedback path (DAC) within the analog-to-digital converter (ADC1) provides a feedback action only in response to a digital output sample that has a value other than the neutral value.
摘要:
Starting from an input signal (data) and a clock signal (clk), this device supplies an output signal (CKREF0) identical to the input signal but resynchronized with the clock signal. It comprises two cascaded D-type flip-flops (63, 65), the clock signal of the second flip-flop being inverted (62) with respect to that of the first flip-flop. The first flip-flop has its output coupled to the data input of the second flip-flop via a multiplexer (64), which is controlled by a signal (d-Ph) containing information about the phase relationship between the input signal and the clock signal, in such a manner that either input signal or the signal from the first flip-flop is applied to the input of the second flip-flop. This device can be used in a known phase control loop comprising an oscillator whose frequency is controllable, a frequency divider, and a phase comparator.
摘要:
A shrinking-pulse digital delay line (400) has a cascade of a plurality of stages (102,104) for modifying a width of a pulse propagating down the cascade (106 to 118). Each specific one of the stages has an input (106,116), an output (108,118) and a main path (110,112,120,122) between the input and the output. The main path has a first inverter (110,120) and a second inverter (112,122) connected in series via an intermediate node (114,124). Each specific stage has a third inverter (128,140) connected between the input and the intermediate node of a downstream stage in the cascade (102,104); and also has a fourth inverter (132,144) connected between the intermediate node of the specific stage (mode 114, stage 102, mode 124, stage 104) and the output (118, stage 104) of the downstream stage (stage 104).