Abstract:
A process for room temperature substrate bonding employs a first substrate substantially transparent to a laser wavelength is selected. A second substrate for mating at an interface with the first substrate is then selected. A transmissivity change at the interface is created and the first and second substrates are mated at the interface. The first substrate is then irradiated with a laser of the transparency wavelength substantially focused at the interface and a localized high temperature at the interface from energy supplied by the laser is created. The first and second substrates immediately adjacent the interface are softened with diffusion across the interface to fuse the substrates.
Abstract:
A flow cell incorporates a first substrate with a metal layer on one surface. A tape layer having flow channels is adhered to the first substrate. A second substrate having a second metal layer on one surface is adhered to the tape layer opposite the first substrate. At least one of the first and second metal layers includes mating cutouts to at least partially expose the flow channels.
Abstract:
Bulk materials having a kinetically limited nano-scale diffusion bond is provided. The bulk materials having a kinetically limited nano-scale diffusion bond includes transparent material, absorbent opaque material and a diffusion bond. The transparent material has properties that allow an electromagnetic beam of a select wavelength to pass there through without more than minimal energy absorption. The absorbent opaque material has properties that significantly absorb energy from the electromagnetic beam. The diffusion bond is formed by the electromagnetic beam bonding the transparent material to the absorbent opaque material. Moreover, the diffusion bond has a thickness that is less than 1000 nm.
Abstract:
A process for room temperature substrate bonding employs a first substrate substantially transparent to a laser wavelength is selected. A second substrate for mating at an interface with the first substrate is then selected. A transmissivity change at the interface is created and the first and second substrates are mated at the interface. The first substrate is then irradiated with a laser of the transparency wavelength substantially focused at the interface and a localized high temperature at the interface from energy supplied by the laser is created. The first and second substrates immediately adjacent the interface are softened with diffusion across the interface to fuse the substrates.
Abstract:
A flow cell incorporates a first substrate with a metal layer on one surface. A tape layer having flow channels is adhered to the first substrate. A second substrate having a second metal layer on one surface is adhered to the tape layer opposite the first substrate. At least one of the first and second metal layers includes mating cutouts to at least partially expose the flow channels.
Abstract:
A process for room temperature substrate bonding employs a first substrate substantially transparent to a laser wavelength is selected. A second substrate for mating at an interface with the first substrate is then selected. A transmissivity change at the interface is created and the first and second substrates are mated at the interface. The first substrate is then irradiated with a laser of the transparency wavelength substantially focused at the interface and a localized high temperature at the interface from energy supplied by the laser is created. The first and second substrates immediately adjacent the interface are softened with diffusion across the interface to fuse the substrates.
Abstract:
A process for room temperature substrate bonding employs a first substrate substantially transparent to a laser wavelength is selected. A second substrate for mating at an interface with the first substrate is then selected. A transmissivity change at the interface is created and the first and second substrates are mated at the interface. The first substrate is then irradiated with a laser of the transparency wavelength substantially focused at the interface and a localized high temperature at the interface from energy supplied by the laser is created. The first and second substrates immediately adjacent the interface are softened with diffusion across the interface to fuse the substrates.