Abstract:
A device for holding samples to be analyzed using the infrared transmission spectroscopy comprised of three or more infrared transparent windows that creates unparalleled gaps while maintaining a consistent path length, which eliminates interference fringes and ensures that quantitative analysis can be achieved. The present invention allows the use of high refractive index material, silicon, as window material. The device using silicon windows can serve both purposes of sample storage and infrared measuring cell. All-purpose disposable sample holders are now possible. In one embodiment, a pre-assembled sample holder is most suitable for loading and analyzing flowable liquid samples. In another embodiment, a sample holder can be easily assembled after high-viscosity fluids and deformable solid samples are loaded. In an alternative embodiment, the device comprised of two or more infrared transparent windows and a reflective mirror can be used for quantitative analysis using transflection infrared spectroscopy.
Abstract:
Provided are methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells, particularly including debulking that uses a microfabricated filter for filtering samples. The enriched rare cells can be used in a downstream process such as identification, characterization or growth in culture, or in other ways. Also included is a method of determining tumor aggressiveness or the number or proportion of cancer cells in the enriched sample by detecting telomerase activity, nucleic acid or expression after enrichment of rare cells. Also provided is an efficient, rapid method to specifically remove red and white blood cells from a biological sample containing at least one of the cell types, leading to enrichment of rare target cells including circulating tumor (CTC), stromal, mesenchymal, endothelial, fetal, stem, or non-hematopoietic cells et cetera from a blood sample.
Abstract:
This mechanism employs an inlet support, which is located at the front side of the plastic grain-collector. A second plastic grain-collector is installed on the right side of the plastic grain-collector and the second plastic grain-collector is also a circular-tank-shaped container. The rotary cutter-holding base is located at the bottom of the collector, and there are three cutters held onto the rotary cutter-holding base. Three cutters for pulverization installed on the top of the cutter-holding base pulverize the plastic grains for the first time; the plastic grains are pulverized for the second time in the main plastic grain-collector. The cutting mechanism pulverizes the plastic grains with the help of the anti-gliding cutters at the inner wall of the plastic grain-collector, and by which it increases the performance of the pulverization. At last, by pushing the force induced from the rotation of the cutter-holding base, the plastic grains will move smoothly into the inlet. The main feature is that the raw materials processed initially in the second plastic grain-collector are pulverized thoroughly in the main plastic grain-collector. Since the performance of pulverization is improved, the better quality of the end product can be obtained.
Abstract:
The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
Abstract:
A method, system and voice browser execute voice applications to perform a voice-based function. A document is retrieved and parsed to create a parse tree. Script code is created from the parse tree, thereby consuming part of the parse tree to create a reduced parse tree. The reduced parse tree is stored in a cache for subsequent execution to perform the voice-based function.
Abstract:
The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
Abstract:
A method and apparatus for accessing messages from a message server. Messages are stored on the message server in their current format without transcoding. When a client opens a session with the message server, a data transfer rate is determined for the client. In response to a message retrieve request, the bit rate of the message is compared to the data transfer rate, and if less than the data transfer rate, the message is downloaded to the user terminal without transcoding. If the bit rate is greater than the data transfer rate, then the message is transcoded to a lower bit rate according to a codec supported by the user. The codec may be selected from a set of codecs supported by the user terminal. The user is provided with the capability to override the system selected codec, for example, to pick a codec for secure encoding or encryption.
Abstract:
A method and apparatus for incorporating a third user into an instant message (IM) session. In one embodiment, an IM server receives a first IM from a first user directed toward a second user. The IM server makes a determination that the second user is not available to respond to the first IM. In response to the determination, the IM server identifies a third user to whom the first IM is to be forwarded, and automatically forwards the first IM to the third user. In another embodiment, the IM server receives a transfer request from the second user to transfer the IM session from the second user to the third user. The IM server automatically determines a subset portion of a plurality of IMs communicated between the first user and the second user, and provides the transfer request and the subset portion to the third user.
Abstract:
A method, apparatus and data structure for managing data in a memory device. The memory device is divided into two volumes. The first volume is intended for storing relatively static data, i.e. data which does not change or is not rewritten frequently. The second volume is intended for storing dynamic data, i.e. data which is changed or rewritten frequently. Each of the volumes is divided into a number of blocks, for example erase blocks, with each block being divided into sectors. In the dynamic volume, each of the erase blocks has one sector allocated for storing metadata, and the remaining sectors in the erase block are available for storing data, other than metadata. In the static volume, each of erase blocks can store more than one sector of metadata, in addition to data other than metadata. The metadata may be stored in consecutive sectors in the erase blocks. According to another aspect, the data structure is suitable for flash disk memory devices and flash disk memory devices used for multimedia applications.
Abstract:
The present invention provides methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells. In particular, the present invention includes a debulking step that uses a microfabricated filters for filtering fluid samples and the enriched rare cells can be used in a downstream process such as identifies, characterizes or even grown in culture or used in other ways. The invention also include a method of determining the aggressiveness of the tumor or of the number or proportion of cancer cells in the enriched sample by detecting the presence or amount of telomerase activity or telomerase nucleic acid or telomerase expression after enrichment of rare cells. This invention further provides an efficient and rapid method to specifically remove red blood cells as well as white blood cells from a biological sample containing at least one of each of red blood cells and white blood cells, resulting in the enrichment of rare target cells including circulating tumor cells (CTC), stromal cells, mesenchymal cells, endothelial cells, fetal cells, stem cells, non-hematopoietic cells etc from a blood sample. The method is based upon combination of immuno-microparticles (antibody coated microparticles) and density-based separation. The final enriched target cells can be subjected to a variety of analysis and manipulations, such as flowcytometry, PCR, immunofluorescence, immunocytochemistry, image analysis, enzymatic assays, gene expression profiling analysis, efficacy tests of therapeutics, culturing of enriched rare cells, and therapeutic use of enriched rare cells. In addition, depleted plasma protein and white blood cells can be optionally recovered, and subjected to other analysis such as inflammation studies, gene expression profiling, etc.