Abstract:
Circuits and methods for loopback testing are provided. A die incorporates a receiver (RX) to each transmitter (TX) as well as a TX to each RX. This architecture is applied to each bit so, e.g., a die that transmits or receives 32 data bits during operation would have 32 transceivers (one for each bit). Focusing on one of the transceivers, a loopback architecture includes a TX data path and an RX data path that are coupled to each other through an external contact, such as a via at the transceiver. The die further includes a transmit clock tree feeding the TX data path and a receive clock tree feeding the RX data path. The transmit clock tree feeds the receive clock tree through a conductive clock node that is exposed on a surface of the die. Some systems further include a variable delay in the clock path.
Abstract:
An electronic circuit and methods of operating the electronic circuit are provided. The electronic circuit includes a pull-up transistor for pulling up an input/output (I/O) node of the output circuit to a first voltage and a first isolation transistor for coupling the pull-up transistor to the I/O node. The electronic circuit also includes a pull-down transistor for pulling down the I/O node to a second voltage and a second isolation transistor for coupling the pull-down transistor to the I/O node. In the electronic circuit, the pull-up and the pull-down transistors are transistors supporting a first drain-to-source voltage and a first gate-to-source voltage, while the first and the second isolation transistors are transistors supporting the first drain-to-source voltage and a second gate-to-source voltage greater than the first gate-to-source voltage.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
An apparatus including a dielectric layer; and a set of thin-film resistors arranged in a row extending in a first direction on the dielectric layer, wherein lengths of the set of thin-film resistors in a second direction substantially orthogonal to the first direction are substantially the same, wherein the set of thin-film resistors includes a first subset of one or more thin-film resistors with respective terminals spaced apart by a first distance, and wherein the set of thin-film resistors includes a second subset of one or more thin-film resistors with respective terminals spaced apart by a second distance, the first distance being different than the second distance.
Abstract:
Metal thermal grounds are used for dissipating heat from integrated-circuit resistors. The resistors may be formed using a front end of line layer, for example, a titanium-nitride layer. A metal region (e.g., in a first metal layer) is located over the resistors to form a heat sink. An area of thermal posts connected to the metal region is also located over the resistor. The metal region can be connected to the substrate of the integrated circuit to provide a low impedance thermal path out of the integrated circuit.
Abstract:
A programmable equalizer and related method are provided. The equalizer includes a pair of current-setting field effect transistors (FETs) coupled in series with a pair of input FETs and a pair of load resistors, respectively, between a first voltage rail (Vdd) and a second voltage rail (ground). A programmable equalization circuit is coupled between the sources of the input FETs, comprising a plurality of selectable resistive paths and a variable capacitor, which could also be configured as a plurality of selectable capacitive paths. Each of the selectable resistive paths (as well as each of the selectable capacitive paths) include a selection FET for selectively coupling the corresponding resistive (or capacitive) path between the sources of the input FETs. In the case where one of the input FETs is biased with a reference gate voltage, the source of each selection FET is coupled to the source of such input FET.
Abstract:
An electronic circuit and methods of operating the electronic circuit are provided. The electronic circuit includes a pull-up transistor for pulling up an input/output (I/O) node of the output circuit to a first voltage and a first isolation transistor for coupling the pull-up transistor to the I/O node. The electronic circuit also includes a pull-down transistor for pulling down the I/O node to a second voltage and a second isolation transistor for coupling the pull-down transistor to the I/O node. In the electronic circuit, the pull-up and the pull-down transistors are transistors supporting a first drain-to-source voltage and a first gate-to-source voltage, while the first and the second isolation transistors are transistors supporting the first drain-to-source voltage and a second gate-to-source voltage greater than the first gate-to-source voltage.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
A circuit includes a first die having a first array of exposed data nodes, and a second die having a second array of exposed data nodes, wherein a given data node of the first array corresponds to a respective data node on the second array, further wherein the first array and the second array share a spatial arrangement of the data nodes, wherein the first die has data inputs and sequential logic circuits for each of the data nodes of the first array on a first side of the first array, and wherein the second die has data outputs and sequential logic circuits for each of the data nodes of the second array on a second side of the second array, the first and second sides being different.
Abstract:
Test architectures for multi-die chips are provided herein according to embodiments of the present disclosure. In certain aspects, an exemplary test architecture enables an external tester to perform various tests on a multi-die chip that includes multiple dies. In a first test mode, the test architecture enables the external tester to currently perform die-level tests on the multiple dies. In a second test mode, the test architecture enables the external tester to perform a chip-level test on the multi-die chip. The chip-level test may include die-to-die tests for testing interconnections between the multiple dies on the multi-die chip. The chip-level test may also include a boundary input/output (I/O) test for testing external connections between the multi-die chip and one or more devices external to the multi-die chip.