摘要:
Providing flexible management of heterogeneous memory systems using spatial Quality of Service (QoS) tagging in processor-based systems is disclosed. In one aspect, a heterogeneous memory system of a processor-based system includes a first memory and a second memory. The heterogeneous memory system is divided into a plurality of memory regions, each associated with a QoS identifier (QoSID), which may be set and updated by software. A memory controller of the heterogeneous memory system provides a QoS policy table, which operates to associate each QoSID with a QoS policy state, and which also may be software-configurable. Upon receiving a memory access request including a memory address of a memory region, the memory controller identifies a software-configurable QoSID associated with the memory address, and associates the QoSID with a QoS policy state using the QoS policy table. The memory controller then applies the QoS policy state to perform the memory access operation.
摘要:
Providing space-efficient storage for dynamic random access memory (DRAM) cache tags is provided. In one aspect, a DRAM cache management circuit provides a plurality of cache entries, each of which contains a tag storage region, a data storage region, and an error protection region. The DRAM cache management circuit is configured to store data to be cached in the data storage region of each cache entry. The DRAM cache management circuit is also configured to use an error detection code (EDC) instead of an error correcting code (ECC), and to store a tag and the EDC for each cache entry in the error protection region of the cache entry. In this manner, the capacity of a DRAM cache can be increased by avoiding the need for the tag storage region for each cache entry, while still providing error detection for the cache entry.
摘要:
Memory controllers employing memory capacity and/or bandwidth compression with next read address prefetching, and related processor-based systems and methods are disclosed. In certain aspects, memory controllers are employed that can provide memory capacity compression. In certain aspects disclosed herein, a next read address prefetching scheme can be used by a memory controller to speculatively prefetch data from system memory at another address beyond the currently accessed address. Thus, when memory data is addressed in the compressed memory, if the next read address is stored in metadata associated with the memory block at the accessed address, the memory data at the next read address can be prefetched by the memory controller to be available in case a subsequent read operation issued by a central processing unit (CPU) has been prefetched by the memory controller.
摘要:
Providing efficient floating-point operations using matrix processors in processor-based systems is disclosed. In this regard, a matrix-processor-based device provides a matrix processor comprising a positive partial sum accumulator and a negative partial sum accumulator. As the matrix processor processes pairs of floating-point operands, the matrix processor calculates an intermediate product based on a first floating-point operand and a second floating-point operand and determines a sign of the intermediate product. Based on the sign, the matrix processor normalizes the intermediate product with a partial sum fraction of the positive partial sum accumulator or the negative partial sum accumulator, then adds the intermediate product to the positive sum accumulator or the negative sum accumulator. After processing all pairs of floating-point operands, the matrix processor subtracts the negative partial sum accumulator from the positive partial sum accumulator to generate a final sum, then renormalizes the final sum a single time.
摘要:
Providing memory bandwidth compression using back-to-back read operations by compressed memory controllers (CMCs) in a central processing unit (CPU)-based system is disclosed. In this regard, in some aspects, a CMC is configured to receive a memory read request to a physical address in a system memory, and read a compression indicator (CI) for the physical address from error correcting code (ECC) bits of a first memory block in a memory line associated with the physical address. Based on the CI, the CMC determines whether the first memory block comprises compressed data. If not, the CMC performs a back-to-back read of one or more additional memory blocks of the memory line in parallel with returning the first memory block. Some aspects may further improve memory access latency by writing compressed data to each of a plurality of memory blocks of the memory line, rather than only to the first memory block.
摘要:
Memory controllers employing memory capacity and/or bandwidth compression with next read address prefetching, and related processor-based systems and methods are disclosed. In certain aspects, memory controllers are employed that can provide memory capacity compression. In certain aspects disclosed herein, a next read address prefetching scheme can be used by a memory controller to speculatively prefetch data from system memory at another address beyond the currently accessed address. Thus, when memory data is addressed in the compressed memory, if the next read address is stored in metadata associated with the memory block at the accessed address, the memory data at the next read address can be prefetched by the memory controller to be available in case a subsequent read operation issued by a central processing unit (CPU) has been prefetched by the memory controller.
摘要:
Aspects disclosed herein include memory controllers employing memory capacity compression, and related processor-based systems and methods. In certain aspects, compressed memory controllers are employed that can provide memory capacity compression. In some aspects, a line-based memory capacity compression scheme can be employed where additional translation of a physical address (PA) to a physical buffer address is performed to allow compressed data in a system memory at the physical buffer address for efficient compressed data storage. A translation lookaside buffer (TLB) may also be employed to store TLB entries comprising PA tags corresponding to a physical buffer address in the system memory to more efficiently perform the translation of the PA to the physical buffer address in the system memory. In certain aspects, a line-based memory capacity compression scheme, a page-based memory capacity compression scheme, or a hybrid line-page-based memory capacity compression scheme can be employed.
摘要:
Providing efficient multiplication of sparse matrices in matrix-processor-based devices is disclosed herein. In one aspect, a matrix processor of a matrix-processor-based device includes a plurality of sequencers coupled to a plurality of multiply/accumulate (MAC) units for performing multiplication and accumulation operations. Each sequencer determines whether a product of an element of a first input matrix to be multiplied with an element of a second input matrix has a value of zero (e.g., by determining whether the element of the first input matrix has a value of zero, or by determining whether either the element of the first input matrix or that of the second input matrix has a value of zero). If the product of the elements of the first input matrix and the second input matrix does not have a value of zero, the sequencer provides the elements to a MAC unit to perform a multiplication and accumulation operation.
摘要:
Providing memory bandwidth compression in chipkill-correct memory architectures is disclosed. In this regard, a compressed memory controller (CMC) introduces a specified error pattern into chipkill-correct error correcting code (ECC) bits to indicate compressed data. To encode data, the CMC applies a compression algorithm to an uncompressed data block to generate a compressed data block. The CMC then generates ECC data for the compressed data block (i.e., an “inner” ECC segment), appends the inner ECC segment to the compressed data block, and generates ECC data for the compressed data block and the inner ECC segment (i.e., an “outer” ECC segment). The CMC then intentionally inverts a specified plurality of bytes of the outer ECC segment (e.g., in portions of the outer ECC segment stored in different physical memory chips by a chipkill-correct ECC mechanism). The outer ECC segment is then appended to the compressed data block and the inner ECC segment.
摘要:
Providing memory bandwidth compression using multiple last-level cache (LLC) lines in a central processing unit (CPU)-based system is disclosed. In some aspects, a compressed memory controller (CMC) provides an LLC comprising multiple LLC lines, each providing a plurality of sub-lines the same size as a system cache line. The contents of the system cache line(s) stored within a single LLC line are compressed and stored in system memory within the memory sub-line region corresponding to the LLC line. A master table stores information indicating how the compressed data for an LLC line is stored in system memory by storing an offset value and a length value for each sub-line within each LLC line. By compressing multiple system cache lines together and storing compressed data in a space normally allocated to multiple uncompressed system lines, the CMC enables compression sizes to be smaller than the memory read/write granularity of the system memory.