Abstract:
A semiconductor device includes a semiconductor chip, and an n-system gate divided transistor, where the “n” is not less than 2, that includes n-number of system transistors formed in the semiconductor chip such as to be individually controlled and that is configured such as to generate a single output signal by selective controls of the n-number of system transistors.
Abstract:
A semiconductor device of the present invention includes a semiconductor layer in which a gate trench is formed, a gate insulating film formed along an inner surface of the gate trench, a gate electrode that is buried in the gate trench through the gate insulating film and that has a lower electrode and an upper electrode that are separated upwardly and downwardly from each other with an intermediate insulating film between the lower electrode and the upper electrode, and a gate contact that is formed in the gate trench so as to pass through the upper electrode and through the intermediate insulating film and so as to reach the lower electrode and that electrically connects the lower electrode and the upper electrode together.
Abstract:
A semiconductor device includes a substrate having a main surface, and a temperature-sensitive diode structure having a trench formed in the main surface, a polysilicon layer embedded in the trench, a p-type anode region formed in the polysilicon layer, and an n-type cathode region formed in the polysilicon layer.
Abstract:
A semiconductor device includes a semiconductor layer that has a main surface including a defined region defined by a trench, a trench insulation layer formed in the trench, a field insulation layer that covers the defined region away from the trench, and a bridge insulation layer that is formed in a region between the trench and the field insulation layer in the defined region and that is connected to the trench insulation layer and to the field insulation layer.
Abstract:
A semiconductor device according to the present invention includes: a substrate; a plurality of trenches formed in the substrate; and a plurality of functional element forming regions arrayed along each of the trenches, including a channel forming region as a current path, wherein the plurality of functional element forming regions includes a first functional element forming region in which the area of the channel forming region per unit area is relatively small and a second functional element forming region in which the area of the channel forming region per unit area is relatively large, and the first functional element forming region is provided at a region where heat generation should be suppressed.
Abstract:
A semiconductor device includes a semiconductor element and a first connection member. The semiconductor element includes a substrate and an electrode pad. The substrate includes a transistor formation region, in which a transistor is formed and which is shaped to be non-quadrangular. The electrode pad is located on the transistor formation region. The first connection member is connected to the electrode pad at one location. The electrode pad is arranged to cover a center of gravity of the transistor formation region in a plan view of the electrode pad. In the plan view, a connection region in which the first connection member is connected to the electrode pad includes a center of gravity position of the transistor formation region.
Abstract:
A semiconductor device includes a semiconductor element and a first connection member. The semiconductor element includes a substrate and an electrode pad. The substrate includes a transistor formation region, in which a transistor is formed and which is shaped to be non-quadrangular. The electrode pad is located on the transistor formation region. The first connection member is connected to the electrode pad at one location. The electrode pad is arranged to cover a center of gravity of the transistor formation region in a plan view of the electrode pad. In the plan view, a connection region in which the first connection member is connected to the electrode pad includes a center of gravity position of the transistor formation region.
Abstract:
A semiconductor device includes a semiconductor layer of a first conductivity type having a main surface at which a trench is formed, a gate insulating layer formed along a side wall of the trench, a gate electrode embedded in the trench with the gate insulating layer interposed therebetween and having an upper surface located below the main surface of the semiconductor layer, a second conductivity type region formed in a surface layer portion of the main surface of the semiconductor layer and facing the gate electrode with the gate insulating layer interposed therebetween, a first conductivity type region formed in a surface layer portion of the second conductivity type region and facing the gate electrode with the gate insulating layer interposed therebetween, and a side wall insulating layer covering the side wall of the trench in a recessed portion defined by the side wall of the trench and the upper surface of the gate electrode.
Abstract:
A semiconductor device according to the present invention includes: a substrate; a plurality of trenches formed in the substrate; and a plurality of functional element forming regions arrayed along each of the trenches, including a channel forming region as a current path, wherein the plurality of functional element forming regions includes a first functional element forming region in which the area of the channel forming region per unit area is relatively small and a second functional element forming region in which the area of the channel forming region per unit area is relatively large, and the first functional element forming region is provided at a region where heat generation should be suppressed.