摘要:
An external cavity, continuously tunable wavelength source comprising a coherent light source having an external cavity including a reflector, such as a mirror or right-angle prism, for reflecting a selected wavelength from a diffraction grating back into the coherent light source. The wavelength is selected by simultaneous rotation and linear translation of the reflector about a pivot point such that the optical path length of the external cavity is substantially identical to a numerical integer of half wavelengths at a plurality of tunable wavelengths about a central wavelength of a tunable bandwidth for the source such that cavity phase error is zero at the central wavelength and is maximally flat on either side of the center wavelength within the tunable bandwidth. The location of said pivot axis is chosen to set the cavity phase error equal to zero and its first and second derivatives substantially equal to zero at exactly one wavelength. The external cavity may be either a Littman optical cavity configuration or a Littrow external cavity configuration. The output of the coherent light source is optically coupled to a gain element for amplification.
摘要:
An external cavity, continuously tunable wavelength source comprising a coherent light source having an external cavity including a reflector, such as a mirror or right-angle prism, for reflecting a selected wavelength from a diffraction grating back into the coherent light source. The wavelength is selected by simultaneous rotation and translational movement of the reflector about a pivot point such that the optical path length of the external cavity is substantially identical to a numerical integer of half wavelengths at a plurality of tunable wavelengths about a central wavelength of a tunable bandwidth for the source such that cavity phase error is zero at the central wavelength and is maximally flat on either side of the center wavelength within the tunable bandwidth. The location of said pivot axis is chosen to set the cavity phase error equal to zero and its first and second derivatives substantially equal to zero at exactly one wavelength. The external cavity may be either a Littman optical cavity configuration or a Littrow external cavity configuration. The output of the coherent light source is optically coupled to a gain element for amplification.
摘要:
A wavelength-stabilized, semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
A phased array of flared amplifiers fed by phase adjusters and a power splitter produces a single high power beam when the flared amplifier sections are aligned and closely spaced. In one embodiment the array is excited by a DBR laser integrated into the same substrate as the flared amplifiers. In another embodiment the array is self-excited and forms a laser between an edge of the substrate common to the power splitter and an edge of the substrate common to the flared amplifier.
摘要:
A wavelength-stabilized, semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the Wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
A semiconductor gain medium has an active gain region with a partially patterned radiation diverging region. The partially patterned radiation diverging region may be created with spatial resistive regions formed in a portion of the radiation diverging region having a narrower width than in other portions of the diverging region where the propagating radiation has a greater width. The gain region may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
摘要:
A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
An optical crossbar switch matrix for use in switching optical signals from a first set of optical fibers to a second set of optical fibers, in any order, which is characterized by having a matrix of rows and columns of diffraction gratings formed in a semiconductor heterostructure. Each grating is independently biased with either a forward or reverse bias voltage to switch the grating between a reflective state and a transmissive state. The gratings are oriented at an angle relative to the rows and columns so that when the Bragg condition for the light received from an optical film is met, a portion of the light is diffracted from the row in which it is propagating into a column toward another optical fiber. The heterostructure may include optical amplifiers to restore the optical signal to its original power level. Beam expanding, collimating and focussing optics may also be integrated into the heterostructure.
摘要:
A semiconductor gain medium has an optical cavity comprising a multimode region permitting propagation of light with a diverging phase front and a single mode region. An optical cavity is formed by optical feedback within the medium. Preferably, the feedback comprises a combination of a cleaved facet and a grating. The gain medium may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
摘要:
A semiconductor gain medium has an optical cavity comprising a multimode region permitting propagation of light with a diverging phase front and a single mode region. An optical cavity is formed by optical feedback within the medium. Preferably, the feedback comprises a combination of a cleaved facet and a grating. The gain medium may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.