摘要:
A semiconductor laser includes a grating that is disposed at an angle to cavity reflectors to coherently diffract a beam of light along a path that is at least partially laterally directed within the cavity. The grating period and orientation are selected such that a specified wavelength of the light beam propagating along the path will resonate for light that impinges upon the end reflectors at normal incidence. By keeping the angle of incidence of the light beam upon the grating greater than about 45 degrees, reflectivity of the grating is maximized and the required grating period is larger thereby simplifying the fabrication of the grating.
摘要:
A semiconductor laser that includes at least one grating reflector with a grating period selected to diffract at a nonperpendicular angle within the plane of the laser waveguide. This allows dispersal of laser light, eliminating filamentary multimode operation of broad area lasers. In one embodiment, the grating reflector couples light between a single transverse mode waveguide portion of the optical cavity and a second, broad area, portion that is not collinear with the single mode waveguide. In another embodiment, the cavity favors a ring mode of oscillation. One or more grating reflectors form part of the feedback mechanism which forms a resonant optical cavity with noncollinear portions. Other reflectors in the feedback mechanism include facet reflectors which can be cleaved or ion milled, or semiconductor material refractive index boundaries. Laser embodiments with two or more grating reflectors can be independently tuned to provide a high rate of amplitude modulation. Spatial beam deflection and wavelength tuning are also achieved. A stable unidirectional ring laser is also described. Multiple ring laser cavities can also be coupled together by partially reflecting grating reflectors to form a laser array.
摘要:
A travelling-wave semiconductor laser amplifier having suppressed self-oscillation is provided. When incorporated into a master oscillator power amplifier device, such a device has improved light output versus amplifier current characteristics. Also provided is a method for suppressing self-oscillation in travelling-wave semiconductor laser amplifier structures for improving the characteristics of the device into which the amplifier is incorporated.
摘要:
A compact semiconductor laser light source providing short wavelength (ultraviolet, blue or green) coherent light by means of frequency doubling of red or infrared light from a high power diode heterostructure. The high power diode heterostructure is a MOPA device having a single mode laser oscillator followed by a multimode, preferably flared, optical power amplifier. A tunable configuration having an external rear reflector grating could also be used. A lens could be integrated with the MOPA to laterally collimate the light before it is emitted. Straight or curved, surface emitting gratings could also be incorporated. An astigmatism-correcting lens system having at least one cylindrical lens surface is disposed in the path of the output from the MOPA to provide a beam with substantially equal lateral and transverse beam width dimensions and beam divergence angles. A nonlinear optical crystal or waveguide is placed in the path of the astigmatism-free symmetrized beam to double the frequency of the light. Single pass or multipass configurations with reflectors could be used, as well as external resonator and segmented, periodically poled waveguide configurations.
摘要:
A wavelength-stabilized, semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
A compact semiconductor laser light source providing short wavelength (ultraviolet, blue or green) coherent light by means of frequency doubling of red or infrared light from a high power diode heterostructure. The high power diode heterostructure is a MOPA device having a single mode laser oscillator followed by a multimode, preferably flared, optical power amplifier. A tunable configuration having an external rear reflector grating could also be used. A lens could be integrated with the MOPA to laterally collimate the light before it is emitted. Straight or curved, surface emitting gratings could also be incorporated. An astigmatism-correcting lens system having at least one cylindrical lens surface is disposed in the path of the output from the MOPA to provide a beam with substantially equal lateral and transverse beam width dimensions and beam divergence angles. A nonlinear optical crystal or waveguide is placed in the path of the astigmatism-free symmetrized beam to double the frequency of the light. Single pass or multipass configurations with reflectors could be used, as well as external resonator and segmented, periodically poled waveguide configurations.
摘要:
A wavelength-stabilized, semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the Wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
摘要:
III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
摘要:
Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.